NIUS Project Report

Author : JAYANT THATTE!

Abstract

The report presented below gives a brief summary of the work done on the project under NIUS (National
Initiative for Undergraduate Sciences), an initiative by TIFR (Tata Institute of Fundamental Research),
Mumbai.

The aim of the project is to use computational techniques and knowledge of the rapidly developing field
of Asteroseismology to deduce the internal parameters of a star such as density and pressure profiles, com-
position, existance and extent of convective core or envelope by analysing its oscillation frequency data.
To achieve this, a multi-dimensional grid of stellar models was generated with each dimension in the grid
giving gradation of one physical stellar property. Parameters used for making the grid included stellar mass,
composition (X, Y, Z parameters), convective overshoot and mixing length. After the grid was generated,
oscillation frequencies (for different modes) were calculated for each point in the grid.

The next step is to take real stellar frequency data® and try to fit this star into the grid using a fitting
algorithm. Once the star has been placed on a region in the grid, the internal properties of the star can be
predicted (with some tolerence) using interpolation.

The first few months were spent in reading and understanding of the first six chapters from Theory of
Stellar Evolution by Dina Prialnik and chapter 1 and parts of chapter 2 and 3 of Astroseismology by Aetrs,
Christensen-Dalsgaard, Kurtz. The work done also includes getting acquainted with YREC code, reading
and understanding YREC (Yale Rotating Evolutionary Code) by P.Demarque et. al., running the code for
different stars of masses and learning basics of shell scripting in Linux.

The latter part of the project involved generating the stellar grid using YREC. Several parameters in the
code need to be customised for generating each point in the grid and hence, the process cannot be done
manually. Hence, this part of the project also requied heavy use of Linux shell scripting to automate the
process and for efficient data management.

Sections 1 to 5 explain the basic concepts of structure and mechanics of the stellar interior. Sections 6
and 7 briefly cover a qualitative understanding of the causes and types of steller oscillations without going
into rigorous mathematical details. A list of topics studied for the project is given in section 8. Section 9
gives a small paragraph about the working of YREC and an overview of the support package developed as
a part of this project. Note that the picture of YREC protrayed in this section is an over-simplified one.
In reality, one need to tweak numerous parameters in the code to generate reasonably accurate models in a
practical computation time. Sections 10 and 11 give a detailed documentation of the YREC support package.

Under each section, only the key equations/concepts are given. Derivations and rigorous arguments are
excluded from this document. This document does not give the complete details of all the work done, but
only important points of major parts of work.

IDepartment of Electrical Engineering, Indian Institute of Technology Madras
2For this project, data from French mission CoRot (COnvection ROtation et Transits planétaires) was used.

Contents

Stellar Interior

Basic Equations

1.1 Equations of Stellar Evolution
1.2 Virial Theorem
1.3 TimeSclaes

Gas and Radiation Pressure in Stellar Interiors

2.1 Gas Pressure
2.2 Radiation Pressure

Eddington Luminosity and Convection and Stellar winds

Instabilities in Stars

4.1 Thermal Instability
4.1.1 Secular Thermal Equilibrium . .
4.1.2 Thermonuclear Runaway (TNR)

4.2 Dynamic Instability
4.2.1 Condition for Dynamic Stability
4.2.2 Causes of Dynamic Instability . .

4.3 Convective Instability

Adiabatic Exponents

Stellar Oscillations

Simple Waves in Stars

6.1 Acoustic Waves
6.2 Internal Gravity Waves
6.3 Surface Gravity Waves
Oscillation in Stars

71 Modes
7.2 Quantum Numbers
7.3 Small and Large separation
7.4 Driving Mechanisms

List of Other Topics Studied

III Implementation
9 YREC and Support Package Overview

10 Package Execution Guidelines

10.1 Generating Models
10.2 Success Check
10.3 Tolerences in .phy File
10.4 Sanity Check
10.5 Interest Check
10.6 Computing Frequencies
10.7 Other

11 Optimising .phy and .ctl Files

11.1 wctlFile oo
11.2 phy File.
12 Images

13 Appendix

13.1 Appendix A: Central Script which Calls YREC

13.2 Appendix B: Other Scripts

14 Acknowledgements

10
10
10
11
11
11
11

11
11
12

12
13
13
32

48

Part 1

Stellar Interior

1 Basic Equations

1.1 Equations of Stellar Evolution?

e Energy Equation: First law of thermodynamics applied to stellar interiors gives

oF . d (1

Because the dynamic time scale and thermal time scale of the star is much smaller than nuclear time
scale, right hand side can be assumed to vanish.

e Equation of Motion: Balancing forces due to gravity and hydrostatic pressure

2 o
—?—471'7" %—TNO (2)

Because the dynamic time scale is very small, the star can be assumed to be under hydrostatic equilibrium
during most of its lifetime. Hence # can be set to zero.

e Equations of Composition: Let X; be the mass fraction of the i*" element composed of n species, for
i=1ton .

1.2 Virial Theorem

e Virial theorem is derived from the equation of hydrostatic equilibrium and hence is valid only when
star is under hydrostatic equilibrium.

M
P Qs

PSVS—/ —dm == 4)
o P 3

Qs is the energy needed to assemble a sphere of mass M, with volume V; and surface pressure P;. For
stars, typically Ps = 0.
e For ideal gas and non-relativistic degenerate electron gas Ugqs = —0.5§) 445 and hence* E = U+ = —Ugas

e For radiation and relativistic electron degenerate gas Uyqq = —rqd

e For a star Q = Qa5 + Qpgq and Fper = —Ugas

1.3 Time Sclaes

Time scale of a quantity ¢(t) is defined as 7(t) = ¢/¢ and can be thought of as the time needed for the quantity
to completely deplete given its instantaneous time derivative.

e Dynamic Time Scale (74y,) is defined as

R R R3 \ /2 1)
Tdyn = —= ~ = _ = 0—
W R Ve \GM (Gp)1/?

where p is the average density of the star. For sun 74y, = 103sec. Stellar oscillations occur over dynamic
time scale.

3Effects of rotation and magnetic field are neglected. We also assume that the star is isolated and with uniform initial composition.
4Kinetic energy of the stellar material is assumed to be zero as the star is in hydrostatic equilibrium

e Thermal (Kelvin-Helmholtz) Time Scale (7x;) is defined as

U GM

Tkh = T = R2L (6)

and is equal to the life time of the star had it used only its gravitational potential energy to shine. For
sun, 7, ~ 10'%sec which is few tens of million years.

e Nuclear Time Scale (7,,.) is defined as the lifetime of the star had it used only its nuclear energy to

burn. It is given by

eMc?
Tnuc = 7 (7)

¢ is the binding energy of nucleon per unit rest mass. 7,,. is much larger than the actual lifetime of the
star and larger than the age of the universe itself indicating that stars do not use all of their available
nuclear energy for burning.

o Tayn K Trp K T < Thue
where T is the stellar lifetime. Thus star can be assumed to be in dynamic and thermal equilibrium for
most of its lifetime, but never in nuclear equilibrium.

e Since 74y, <K Tin, most of the processes occurring in the interior regions of the star can be assumed to
be adiabatic. This is known as the Adiabatic Approximation. This approximation not valid in the
parts of the star close to the surface.

2 Gas and Radiation Pressure in Stellar Interiors

Consider an isotropic distribution of particles impinging on an imaginary surface and bouncing off elastically.
Let momentum distribution of the particles be given by n(p) where n is the number of particles per unit volume
with momentum p. Momentum transferred to the surface per unit area due to particles coming at an angle 6
to the surface normal is given by

dpy = [v cos 8dt][n(p, 0)dpdb][2p cos 6] (8)

Since particle distribution is isotropic, the number of particles coming in at angle 6 is equal to the corresponding
solid angle given by 2y = 0.5sin #df. Hence

dpg /dt = [v cos 0][n(p)dp][sin 0dO/2][2p cos] = [pvn(p)dp][cos?® O sin HdA] (9)

Hence pressure on the surface is given by

P= (/000 pvn(p)dp) (/077/2 cos? fsin 9d9> = :13/0Oo pun(p)dp (10)

This is called the Pressure Integral and relates velocity distribution of the particles to the pressure that they
exert.

2.1 Gas Pressure

e Ton Pressure: The ions can be treated as an ideal gas mixture and hence using Maxwellian velocity
distribution and pressure integral, P;,, = RpT/pion where p is the mean atomic mass of the stellar
material and is a function of X, Y and Z.

e Electron Pressure (non-degenerate): P. = RpT/u. where ! is the number of electrons per nucleon
in the stellar material.

e Degeneracy Pressure: Pdegaps/?’m_1

where p is the density of the material and m is the mass of the particle causing degeneracy pressure. Thus,
it is clear that Py, has a significance only in case of electrons. P, gcq plays an important role in stars
with very high density.

2.2

Radiation Pressure

Using Planck Distribution and Pressure integral, we get

5k4 T4
STk T iy (11)

Pra = TF 3113
47 15303 7 3

where a is called the radiation constant.

3 Eddington Luminosity and Convection and Stellar winds

Consider a star under hydrostatic and radiative equilibrium. Hence

dP __ Gm
dm ~— dmrt
dT 3 K F

ar_ 3 s _F 13
dm dac T3 (47r?2)? (13)

where F(m) is the radiative flux and x is the opacity. Also, P..q = %aT‘*. Hence

dPraq o dPraa didﬂ _ KkF (14)
dP ~ dT dmdP 4mcGm

Note that |dP,qq4| < |dP| and both have the same sign. Hence, dP,.qq/dP < 1. This gives

KF < 4dnGem (15)

Violation of this condition, either due to very high opacity or due to very large energy flux, means
that radiation is not efficient enough to transport all the produced energy. At least one of hydrostatic
equilibrium or radiative equilibrium must be violated in this case.

In the interior of the star, hydrostatic equilibrium cannot be violated and hence convection sets in (radiative
equilibrium violated) if the above inequality is not satisfied.

The surface of the star must be radiative. Hence kF(M) < 4wGeM that is

ArGeM
K

L < = Leqa (16)

The right hand side of the above inequality is called Eddington Luminosity and is the upper cap of
luminosity for all stable stars.

If L > Lcgq, then hydrostatic equilibrium must be violated at the surface and the star starts giving out
very strong stellar winds.

4 Instabilities in Stars

4.1

4.1.1

Thermal Instability

Secular Thermal Equilibrium

This is true for stars with low electron degeneracy pressure. For a star under equilibrium, L = L,,.. If due
to some small perturbation, L < Lyy.. This causes E to rise and hence U, falls (because E = —Ugqs). This
means that €2 has to rise. Thus, the gas expands and cools. Since both temperature and density fall, L,,,. falls
and equilibrium is restored. The star is said to be under secular equilibrium.

4.1.2 Thermonuclear Runaway (TNR)

TNRs are observed in stars whose pressure is dominated by electron degeneracy pressure. If, for such a star,
due to a small perturbation, L < Ly,.. Here again, Ug,s decreases, but temperature does not fall>. Hence, the
gas expands, but does not cool. The rates of nuclear reactions are much more sensitive to temperature and not
as much to density. Hence L. does not fall and hence remains greater than L. This causes temperature to rise
causing a further shoot in rate of nuclear reactions. This leads explosion of energy called TNR. During TNR
gas expands and much of heat is given out in the ’flash’. Hence, degeneracy is lifted and secular equilibrium is
reached.

4.2 Dynamic Instability
4.2.1 Condition for Dynamic Stability

Consider a star of equilibrium parameters Py, pg, ro. Let the star undergo a small uniform, radial contraction/-
expansion. Thus
r=ro(l —¢) (17)

where |¢| < 1. By substituting this in the basic stellar equations, we get

p = po(l+ 3e) (18)
ans = p’Ya = P(l + 37116) (19)
Py = P(1 + 4¢) (20)

where Pyq, is the actual gas pressure after perturbation and P, is the pressure required to withstand gravity.
A star is stable if (Pyqs — Pp)e > 0. This gives condition for stability.

e Star is in dynamic equilibrium if v, > 4/3 everywhere.

e Star is in neutral equilibrium if v, = 4/3 everywhere.

e Star has global dynamic instability if fOM(’Ya — 4/3)%.dm < 0. Thus denser regions of the star (core)
contribute more.

4.2.2 Causes of Dynamic Instability

e As a star becomes more and more degenerate, v, — 4/3 and hence we completely degenerate stars are
unstable. For stars with core mass below the Chandrasekhar Mass the degeneracy pressure balances
gravity, but for higher masses, the star collapses on contraction leading to a supernova.

e Star with dominant radiation pressure are unstable (v, — 4/3). This is also indicated by Virial Theorem.
Virial Theorem suggests that for radiation, £ = U,.qq + 2rq¢ = 0. Thus the star becomes an unbounded
system.

e Consider a gas where number of particles (V) is not fixed. If volume (V) reduces by a small amount,
particles undergo recombination and hence N reduces. Since Pa(N/V'), pressure does not rise as much
as in constant N case. This may lead to instability. Indeed if 7, is plotted® as a function of fraction of
particles ionised (Figure 1), we clearly see that completely ionised and completely non-ionised gases are
stable, but mixtures are not.

e Pair formation and Photodisintegration also cause instability through a similar effect at very high tem-
peratures.

5For degenerate stars Ugqs is related to the zero point energies of the various shell and hence is insensitive to temperature.
Hence fall in Ugqs does not force drop in the temperature of the gas.
6+, is plotted using equation (3.60) from Theory of Stellar structure and Evolution by Dina Prialnik with x ~ 10eV.

4.3 Convective Instability

Consider a fluid element of mass Am. The element was initially at equilibrium at (P;, p1) and then moved
radially outward by a differential length to a location (Py(< Py), p2(< p1)). The initial state of the fluid element
has to be same as its surroundings. As the element moves outward, it must expand so that its internal pressure

now matches with the new external pressure P». Since Tgqyn, < Tin, the expansion can be taken as adiabatic.
Let the new density of the fluid element be p,. The described configuration is stable if and only if p, > p. This

gives the following condition for stability
dP dP
(%)...< (%) o
dp star dp adiabatic

that is, a region of star is convectively stable when v < ~,.

5 Adiabatic Exponents

dlnp I's—1 OlnT OlnT
I = : = '3 —1= 22
! (811“9)Ml7 Iy <8lnp)ad’ ° <8lnp)ad (22)

For ideal gas (8 = 1) I'y =Ty = I's = 5/3 whereas for pure radiation, I'y = T's = T'3 = 4/3. But for 0 # 8 # 1,
the three adiabatic exponents are unequal.

Part 11

Stellar Oscillations

6 Simple Waves in Stars

Notation: For a quantity p, po denotes its equilibrium value and p’ is a small Fulerian perturbation while dp
denotes the corresponding Lagrangian perturbation.

p(r,t) = po(r) +p'(r, 1) (23)

op(r) = p'(ro) + dr - Vpo (24)

6.1 Acoustic Waves

Consider a very simple case of spatially homogeneous medium. Takig divergence of equation of motion, we get

2
_ 2./

Substituting p’ by p’ using I'1, we get waves travelling with /I’y 9po/po- These are nothing but sound waves

travelling through the medium.

6.2 Internal Gravity Waves

Consider stellar medium with gravity pointing in the radial direction. In such a system, two kinds of waves
propagate: (i) acoustic waves discussed above and (ii) waves of much smaller frequency.

Consider a fluid element which moves radially upward by a small distance and hence expands and if its density
is more than surroundings, it falls back, thus giving rise to oscillatory motion. As it expands, it pushes the
surrounding fluid horizontally. This gives the oscillation inertia which increases with increase in the horizontal
wavelength of the oscillation and hence the oscillation frequency decreases. Setting up and solving equations
for the oscillation, a value of frequency is obtained. A real frequency suggests oscillatory motion whereas an
imaginary frequency suggests convective instability so that the displaced fluid element continues to move radially
outward.

6.3 Surface Gravity Waves

Consider the stellar surface. Since the length under consideration is small, the stellar surface can be assumed to
be flat, horizontal. Assume uniform gravity in downward direction. Since fluid is assumed to be incompressible,
we get that density perturbation is zero and hence divergence of any velocity of the fluid is zero. Surface gravity
waves are waves similar to those on the surface of water. The frequency of these waves depends only upon
gravitational acceleration and the wavelength. In general, surface gravity waves exist at any surface where
density has a discontinuity. These oscillation are called gravity driven modes or g modes.

7 Oscillation in Stars

7.1 Modes

e g modes are gravity driven modes discussed above. They are non-radial modes and exist in the interior
regions of the star. As the number of radial nodes increase, frequency of g-modes decreases.

e p modes are pressure driven modes and can be radial or otherwise. These modes exist in the outer
regions of the star. As the number of radial nodes increase, frequency of g-modes increases.

e In addition to the g and p modes, there may also exists an f mode which is intermediate between p and
g modes.

7.2 Quantum Numbers
Each mode is characterised by a set of three quantum numbers: n, [and m.

e 7 is called the overtone of the mode and is equal to the number of radial nodes.
e | is called the degree of the mode and is equal to the number of surface nodes. 0 < I <n—1

e m is called the azimuthal order of the mode. Out of the I surface nodes /m/ nodes are longitudinal nodes.
|m| < 1. All modes with m # 0 are travelling modes. By convention, modes travelling prograde have
m > 0.

7.3 Small and Large separation

e Large separation is equal to inverse of the time needed for the wave to travel from the stellar surface to
its interior and back. Large separation depends upon the radius and hence can be used to find the mass
of a main sequence star. Stars with larger mass have smaller value of large separation.

e Small separation is affected by the core composition (larger mass fraction of hydrogen in the core implies
larger value of small separation) and hence gives information about the stellar interior.

7.4 Driving Mechanisms

e Heat Driven is similar to mechanism of a heat engine. During compression phase of the oscillation, a
layer (usually radial) of star gains energy. This energy is then used to drive the expansion phase.

e Opacity Driven (xMechanism) is dominant in the different ionisation layers within the star. The steps
involved are as follows.

— Neutral atoms (usually H and He) block radiation resulting in increase in pressure due to which the
star swells.

— As the star swells, the elements ionise and become less opaque and hence the radiation can pass
through.

— The star contracts and the H and He ions recombine.

e ¢ Driven modes are the oscillation of the star due to variations in the energy (e) produced in the star’s
core.

e Stochastically Driven: In convective zones of stars, close to the stellar surface, the moving fluid elements
reach sonic speeds and act as sources of acoustic noise. If the noise contains fundamental frequencies of
the star, energy gets drawn into these modes through resonance. This mechanism is found in stars with
a convective envelope and mass up to 1.5 solar masses.

8 List of Other Topics Studied

The following topics were also studied during the winter but could not be elaborated here due to documentation
constraints.

e Stellar evolution was read and understood from both Prialnik and Astroseismology
e Equation of radiative heat transfer
e Opacity: different causes and properties

e Nuclear reactions in star including P-P Chain, CNO Cycle and Tripple Alpha Reaction and their
properties.

e Polytropic Model

e Chandrasekhar Limit

e Instability of Thin Shells

e General hydrodynamics of stars (from Astroseismology)

e Shell scripting in Linux (from online tutorials) and codes written in same

Part III

Implementation

9 YREC and Support Package Overview

The YREC code uses mass as the independent variable. It divides the star into different layers (called meshing).
The number and thickness of layers are decided by constrains on the relative difference in the values various
quantities in any two consecutive shells. Then the model is evolved in time. The time step needs to be customised
by the user so that both accuracy and efficiency are maintained. After this redistribution of the shell points is
done. The code calculates at each point in time, several useful quantities like radius, luminosity, mass fraction
of hydrogen in core, degree of degeneracy etc. The code also gives quantities like pressure, density etc. at each
shell point in the star. YREC needs a considerable amount of tuning for each run to go through in an optimum
manner and hence it is not possible to do this task manually. YREC support package was developed as a part
of this project for the same reason. The details of the package are given below.

The models were generated using YREC in a directory hierarchy, each level of directories giving gradation over
a particular parameter, so as to facilitate proper sorting of the models. For each grid point, the star is evolved
from birth up to Helium flash or till it settles down in the Red Lump (depending on the initial mass of the
star). Each grid point is associated with a Physics file (.phy) and a Control File (.ctl). The physics file contains
values of tolerences for various parameters, to be used during the YREC execution. These values need to be
adjusted for optimum time stepping and meshing. If the tolerences are too tight, the models are accurate,
but the computation time may become impractical. On the other hand, if the tolerences are very weak, the
code may not converge and crash. The control file contains ending criterion for the run and the condition and
frequency for writing out models.

For each grid point, the star is evolved from birth and models are written out as per requirement. After the
run has completed, it is checked for crashes or absense of conversion. There may be cases where the models
written out are not realistic even though the code did not crash. This usually when the code does not converge
well and just about manages to pass the success check. For this purpose, a sanity check is performed on runs
which pass the success check.

Usually from techniques other than asteroseismology, the rough location of the observed star is known on a g
vs T (surface gravitational acceleration vs surface effective temperature). Hence for the purpose of fitting the
star into the grid, only the models lying within this g-T box are used. Hence, after writing out the models, only
those models, in any, which lie inside this specified box are automatically pulled out.

After this, oscillation frequencies were computed for the relevant models using frequncy computation code
written by Dr. H. M. Antia and Echelle Diagram is plotted to identify the various modes of oscillation including
the mixed modes.

A flow chart giving the overview of the entire process is given in the last section of this report

10 Package Execution Guidelines

10.1 Generating Models

e Execute ‘runyrec’ with appropriate arguments. Use ‘runyrec -q’ for more details.

e ‘runyrec’ will create a hierarchical directory structure inside ‘MODELS LOC’ specified by the user in the
user configurable part of ‘runyrec’.

e The time taken for the run to complete is written out in ‘stagetime’

10.2 Success Check

In rest of the document, unless otherwise specified, all actions are to be done in the concerned innermost
directory of the directory hierarchy.

e If any of the several runs crashes, for whatever reason, ‘runyrec’ will exit and a <stage name>>.flg file will
be created. If a stage, which was unsuccessful during a prior run becomes a success, then the corresponding
g file is removed.

e Details regarding the success of each of the stages is written out in a crash report named ‘main.crash’.

e To perform a crash check on a particular stage run ‘crash _check <stage name>’. It will produce / delete
g file for the correcponding run and generate ‘<stage name>.crash’ as crash report and also updates
‘main.crash’ suitably.

e At any point in time, the user can check all stages of a particular run by running ‘checkall’.

10.3 Tolerences in .phy File

e ‘hpttolchk.sh’ and ‘htolerchk.sh’ can be used to check which tolerence value is being hit or violation of
which criterion has caused the run to fail.

e Two files in the source code ‘crrect.f’” and ‘hpoint.f” were edited to print flags to a file ‘fort.52’ in the
working directory during execution of each stage.

e ‘hpttolchk.sh’ counts how many times each HPTTOL flag was raised in ‘fort.52’.
e ‘htolerchk.sh’ counts how many times each HTOLER flag was raised in ‘fort.52’.

e This gives empirical information pertaining to which tolerances and criteria are relevant for speeding up
execution or making finer grids at a certain stage.

e The required tolerences can be adjusted in the .phy file for the concerned run(s).

"The entire process from understanding the required theory, implementing the grid, computing frequencies, fitting observed
stars to finally getting the internal parameters of the star is a very long process. This project handles mainly the theoretical and
computational aspects. Further work needs to be done on data fitting and parameter extraction.

10

10.4 Sanity Check

e After verifying that the run has gone through successfully, the next step is to perform a sanity check on
the models.

e Execute ‘checkrun’. It will generate a GNUPIlot file named ‘check plot’. Load this into GNUPlot. This
will generate plots which will help in performing the sanity check.

10.5 Interest Check

e After a run has cleared sanity check also, the next step is to check if the run passes through the required
g-T box and to know how many models were written out inside the box.

e Run ‘makebox’. This script runs on ‘gtplot’ file generated by ‘runyrec’ and generates a GNUPlot file
named ‘gtbox’. This plot shows whether or not the track passes through the required g-T box, in a
multiplot style. The x and y range of the box can be editted within the ‘makebox’ script.

e If the track seems to pass through the box satisfactorily, run ‘box’. This will output the number of models
lying within the g-T box (as specified in the user configurable part of ‘box’). It will also generate a file
called ‘box models’ which will contain the ages of all the models lying within the box.

10.6 Computing Frequencies

e Pick a model lying within the box and run ‘hmarun editting’. This script is a version of ‘hmarun’ with
few parameters changed to suit red giants.

Further editting and fine tuning will probably be needed.

This will generate a .freq file.

Echelle diagram for the .freq file may be plotted using ‘ech’.

Give ‘ech’ without any arguments to see the usage.

10.7 Other

The entire package including ‘runyrec’ and all the support scripts are present in ‘~/data/research/YREC/BIN’
directory of ‘Vega (IP - 158.144.42.72)’ Each script is well documented and the user is urged to go through the
introduction section for each script for a detailed understanding of the scripts.

A spreadsheet named crash _table.xls containing details of the models made so far is stored in ‘/core/research /-
giants’.

For any clarifications on the procedure or any of the scripts in specific, please contact the author of the concerned
script.

11 Optimising .phy and .ctl Files

11.1 .ctl File

The main issue in optimizing the ctl files was to carefully set the ENDAGE criteria especially while ascending
the red giant branch. The other issue which occured in case of the higher masser (>=2.1m_sun) was that the
convective envelope disappeared shortly before the brgb. This was corrected by changing the SENVOA to 5D-4.

The following are the changes that were made to the ctl files in the models made by us:

m1800 The endage criteria are turned off and the stages by the nmodels criteria for z1678 through z1907. (The
extrapolated fit of the endages was not very good for this mass)

m2000 uses the separate masterfile #2000. z1642->21907: zams_tams NMODLS=150(not 75) (These models
were made before we decided to optimize roughly for a range of masses instead of optimizing tightly each
mass)

m2100 uses the masterfile #2100 for 21474 to z1573 and #2000 otherwise. alsoz1411: tams brgh ENDAGE=0.796

11

11.2 .phy File

Of the various optimization handles available in the phy files, the HTOLER, HPTTOL and ATIME values were
mainly used to optimize the execution. Here the source code files crrect.f and hpoint.f were edited to print a
flag to the output file fort.52 in the models directory whenever one of the convergence criteria were hit. The
scripts hpttolchk.sh and htolerchk.sh when called in that directory scan the file fort.52 and print the number
of instances when each flag was raised. These statistics may be used additionally to decide which criteria may
need to be tightened or relaxed in a particular stage.

The following are the changes that were made to the phy files in the models made by us (default values without
changes given in parentheses):

m1600

e 21411-21642,21714-21907: brgb rghl HPTTOL(7)=0.0001(not 0.001)
e 71541: brgb rgbl ATIME(7)=0.1(not 0.06)

m1700

e 71411: brgb_rghl HPTTOL(6)=0.003(not 0.0001)

o 21411,21539,21573: rgh3_trgb: ATIME(7)=0.1(not 0.06) 21442-21907: brgb_rgbl: HPTTOL(7)=0.0001(not
0.001)

e 71828: rgh2 rgh3,rgh3 trgb: 0.1(not 0.04,0.06)
m1800

e 721411-21642: brgb rghl: HPTTOL(7)=0.0001(not 0.001)
e 71714: brgb_rgbl: HPTTOL(7)=0.0001(not 0.001) ATIME(7)=0.005(not 0.01) rgh1_rgb2: ATIME(7)=0.01(not
0.03) rghb2_rgb3: ATIME(7)=0.1(not 0.04) rgh3_trgh: ATIME(7)=0.1(not 0.06)

m1900

e 71411-21907: brgb_rgbl: HPTTOL(7)=0.001(not 0.0001)
e 71642: rgbl rgh2: ATIME(7)=0.05(not 0.01)

m2000 This directory was initially optimized too tight and therefore has too many deviations from the default
values to be significantly useful. However the models are all alright.

12 TImages

Figure 1 The first figure shows degree of ionisation on x axis and v, on y axis. The second plot is HR diagram
for a two solar mass star with log(7/T) on x axis and log(L/Lg) on y axis.

Figure 2 The YREC code was evolved for stars with mass 2M and Mg. The HR diagram for 2M, star is
shown as an example. The red part if the Pre-Main Sequence stage, the green line is the Main Sequence.
The magenta and cyan tracks represent the lower and upper parts of red giant branch respectively. The
track file generated was observed and an attempt was made to draw analogies between the observations
and theory learnt.

Figure 3 HR Diagram of a 1.6 Solar mass star with mixing length 1.8, no core overshoot, Z=.01607, Y=.2721

Figure 4 The figure shows a plot of logarithm of gravitational acceleration g on x axis vs logarithm of effective
temperature Tc ¢y on y axis and showing the region of our interest in the inset

Figure 5 HR Diagram of the Sun

12

T T T T T T
b "Jusr/local/YREC/sample_yrec/m0200_prems_zams.track"u 10:7 —+—

1.60-] "jusrilocal YREC/sample_yrec/m0200_zams_tams.track"u 10:7 ——

1 2= "usrflocal YREC/sample_yrec/m0200_tams_brgb.track"u 10:7 —
155 "Jusr/local/YREC/sample_yrec/m0200_brgb_rgbl.track"u 10:7 —i—

i 18 "fusrilocalfYREC/sample_yrec/m0200_rgb1_trgb.track"u 10:7 — £
150

- 16

/
/]
i

1 0.8

0.6

4d {800c000021607y2721m1600_prems_zams.track'u 7:4 ——
"d1800c000021607y2721m1600_zams tams.track'u 7:4 —<i—
'|d1800c000021607y2721m1600Y_tams brgb.track'u 7:4 —f— 25
2.5 [d1800c000021607y2721m1600_brgb_rgbl.track'u 7:4 /s
'd1800c000021607y2721m1600% _rgbl_rgb2.track"u 7:47 —s—
'd1800c0000z1607y2721m1600_rgh2_rgb3.track'u 74 —s—
2 ['d1800c0000z1607y2721m1600\ rgb3_trgb.track'y7:4
'd1800c000021607y2721m1600_trgb_zahb.trackfu 7:4 —=— 3

15 t

35

4d {800c000021642y272Bm1000_prems_zams.track'u 7:4 ——— lobal
"f1800c000021642y2728m1000_zams_tams.track'u 7:4 —— Parameters Observed Data
'|d1800c000021642y2728m1000_tams_brgb.track'u 7:4 —s—
25 [d1800c0000z1642y2728m1000_brgb_rgbl.track'u 7:4 —s—
'd1800c000021642y2728m1000_rgbl_rgb2.track"u 7:4 —fs—
'd1800c000021642y2728m1000_rgh2_rgb3.track'u 7:4 j—s—
2 ['d1800c0000z1642y2728m1000_rgh3_trgb.track'u 7:4 Frequency Data
'd1800c000021642y2728m1000_trgh_zahb.track"u 7:4 —=—

15 |
Frequencies
1L
05 t
0t Best Fit Model(s)
05 |

Chemical
Composition

Internal Structure

4 395 3¢ 38 38 375 37 365 36 355

for the same star

13 Appendix

13.1 Appendix A: Central Script which Calls YREC

#!/bin/bash

BHAH AR AR R R R R R AR AR SR A H AR R AR R R BB R R R R A HHHHHHAA AR R AR BB BB R R R R HH RS S H R
This is the main script responsible for running YREC

Please go through usage for how-to-use instructions.
Uses ‘crash_check”’

=+

Authorsx*: Jayant Thatte, Tamaghna Hazra, December 2011.
*Basic framework for this script is borrowed from ‘runcesam’

13

HERAHBAHHBRAHRARHBRAB R AR HBAR BB A BRRH BB R AR BB BB HBRH BB H B AR R AR BB HRRH R AR HBR S 1S

scrname=‘basename $0°¢
version="2.6.0"

HAA##HR R R R R R A HH# #4444 User Configurable Part Begins

HAEHBHBAHAH B HAHBHBAHBHBHHH

function config

{

3

The script creates a directory called models inside $MODELS_LOC
directory.

If models directory already exists, the existing directory is used.

All models made by this script are stored in $MODELS_LOC/models

MODELS_LOC=/core/research/giants

The script uses master files .batch, .ctl and .phy

The location of these files should be given $MASTER_LOC

$MASTER_LOC must have a .batch file and directories ctl and phy

A1l .ctl files should be in this ctl folder. All .phy files should be
in this phy folder.

H = H #

MASTER_LOC=/core/research/giants/master_files

if [[protodonfl -eq 1]1]; then
echo "Using $protodonfile instead of default master folder."
echo "Remove -p token to use default master folder."
MASTER_LOC=$protodonfile

fi

pathhom=/data/research/YREC/DATA/PREMS_GS98
febyhbin=/data/research/bin
MDEFAULT=m2000

He##HAS SRR RSH R AR H###HH User Configurable Part Ends

HERHHBRHRBRHRBRHRARHRRHHRRS

function main

{

This is the collection of the main executable lines of the script
The script is modular in structure and from this function the basic
steps of operation are carried out by calling the relevant functions.

if [$# -eq O]; then # Script invoked with no command-line args

usage # Exit and explain usage, if no argument(s) given.
fi

HH##HHHH#A#A##SE Initialise all the flags
flag_initialise

HE##HHRAH#ERAH#YE Parse the arguments passed to the script
parse_command_args "$aQ"
shift $7

HH#HHARA#A#A##S Check the consistency of the chosen options
optconsist

HE##HHHHH######E Making a hierarchical directory structure
config

14

make_dir
prepare_directory

choose_homfile
prepctl

function usage

{
This function describes the usage of the script in brief.
Called from: main, parse_command_args, get_option_argument
Calls to: none

if [$# -gt 0 1; then
echo -e "${scrnamel}: $*x\n" 1>&2
exit 1

fi

less << EQHD

The $scrname script is intended for generating stellar models of a given

mass from the ZAMS to the evolved stages specified in terms of age in
Myrs,

central hydrogen abundance, or logarithm of effective temperature.

The CESAM evolutionary code is used to generate the models. The final

output
files are: "{prefixl}aA.AA.osc" for models specified by age = A.AA x 1000
(Myrs),
or "{prefix}xX.XX.osc" for models specified by X_c = X.XX,
or "{prefix}tT.TT.osc" for models specified by log Teff = log(T.
TT),

where {prefix} is by default: "mM.MM" if mass = M.MM in solar units"
Usage: $scrname options

Common options are (equivalent long options in brackets):

Mass:
-m (--mass) <arg> : set mass of model
Evolution:
-A (--age) : express age of desired models in Myrs (not
implemented)
-X (--X_C) : express age of desired models in central H (not
implemented)
-T (--teff) : express age of desired models in log Teff (not

implemented)
-i (--initial) <arg> : initial age/X_c/log Teff (not implemented)
-f (--final) <arg> : final age/X_c/log Teff (not implemented)

-Z (--ZAMS) : create a ZAMS model (not implemented)
Chemical composition:

-x (--X0) <arg> : initial abundance of H

-y (--Y0) <arg> : initial abundance of He

-z (--ZSX0) <arg> : initial value of (Z/X)

-F (--Fe/H) <arg> : initial value of [Fe/H]
Convection:

-a (--alpha) <arg> : mixing length in terms of H_p

-c¢ (--core) <arg> : core overshoot in terms of H_p
Diffusion:
-D (--diffusion) <arg> : enable or disable diffusion
Filenames etc.:
-p (--protodon) <file> : use master files stored in /core/research/

giants/basu_master_files

15

EQHD

-d (--datfile) <file> : use <file> as .dat file to continue evolution

-u (--use) : use the existing .phy and .ctl files instead
of copying from master files

-q (--query) : give a preview of parameters of models to be
created

-ng (--no_graphs) : do not write out any plotting related files (
gtplot, hrplot etc.)

-s (--start_at) : start the run from a custom stage

-e (--end_at) : end the run at a custom stage

exit 1

function flag_initialise

{

Initialise the flags for various options
Called from: main
Calls to: none

massfl="0"

evolfl="0"
age_f1="0"
xc__f1="0"
tefffl="0"
ageifl="0"
ageffl="0"
agesfl="0"
chemfl="0"
febyhfl="0"
xzerofl="0"
yzerofl="0"

zzerofl="0"

alphafl="0"
ovshtsfl="0"

protodonfl="0"
usefl="0"
newfl="0"
queryfl="0"
execfl="0"

function parse_command_args ()

{

H oH R

This function parses the command-line arguments

This is imported from: http://www.gnu.org/server/source/diffmon
Thanks: Noah Friedman <friedman@prep.ai.mit.edu>

Called from: main

Calls to: get_option_argument, flag_dbl, usage

local orig_number_options=$#

H o H H H

If you add new options be sure to change the wildcards below to make

sure they are unambiguous (i.e. only match one possible long option)

Be sure to show at least one instance of the full long option name to
document what the long option is canonically called.

Long options which take arguments will need a ‘*’ appended to the

16

canonical name to match the value appended after the ‘=’ character.
while [$# -gt 0 1; do
case z$1 in

z-A | z--age | z--AGEx*) # To be processed.
flag_dbl "$age_f1" "$1"
shift
age_fl="1"
evolfl="1"

echo Models will be charcterized by age.

z-a | z--alphax | z--ALPHAx)
flag_dbl "$alphafl" "$1"
get_option_argument ALPHA "$1" "$2"
shift $7
alphafl="1"
echo "alpha value = $ALPHA"

z-c | z--core-overshoot* | z--corex | z--0VSHTS* | z--ovshts*)
flag_dbl "$ovshtsfl" "$1"
get_option_argument OVSHTS "$1" "$2"
shift $7
ovshtsfl="1"
echo "Core 0Overshoot = $0VSHTS"

z-E | z--exec* | z--EXECx*) # To be processed.
flag_dbl "$execfl" "$1"
newexec=‘which $2°¢
if [["$7" -eq "0" 11; then
echo "Executable program $newexec found successfully."

else
echo "Executable program $2 not found in your PATH.
Exiting"
exit 1
fi
get_option_argument EXEC "$1" "$newexec"
shift $7

execfl="1"

z-e | z--END_ATx*)
flag_dbl "$endfl" "$1"
get_option_argument stop_evol_at "$1" "$2"
shift $7
endfl="1"
z-ng | z--NO_GRAPHS*)
flag_dbl "$ngfl" "$1"
shift
ngfl="1"

z-F | z--Fe/H* | z--febyhx)
flag_dbl "$febyhfl" "$1"
get_option_argument febyh "$1" "g$2"
shift $7
febyhfl="1"
chemfl="1"

z-f | z--fe/h*x | z--Febyh*) # To be processed.
flag_dbl "$febyhfl" "$1"
get_option_argument febyh "$1" "$2"
shift $7
febyhfl="1"

17

H # H H R

=+

H oH H H O H

55
Z-V*

chemfl="1"

| z--initial-age* | z--initialx*)
flag_dbl "$ageifl" "$1"
get_option_argument agei "$1" "$2"
shift $7

To be processed.

ageifl="1"

| z--mass* | z--MASS* | z--MTOT* | z--mtotx*)
flag_dbl "$massfl" "$1"

get_option_argument MTOT "$1" "$2"

shift $7

massfl="1"

echo "Total mass = $MTOT"

| z--newx | z--NEWx) # To be processed.
flag_dbl "$newfl" "$1"

shift

newfl="1"

| z--protodonfile* | z--protox*) # To be processed.
flag_dbl "$protodonfl" "$1"
get_option_argument protodonfile "$1" "$2"

shift $7
shift
protodonfl="1"

protodonfile="/giant/basu_master_files

| z--query | z--q*)

queryfl="1"

shift

| z--age-stepx | z--stepx) # To be processed.

flag_dbl "$agesfl" "$1"
get_option_argument agestep "$1" "$2"
shift $7

agesfl="1"

| z--usex)
flag_dbl "$usefl" "$1"

shift
usefl="1"
| z--versionx)

echo "$scrname version $version"
exit O

| z--x0% | z--x_0%x | z--X_0% | z--XOx
flag_dbl "$xzerofl" "$1"
get_option_argument X0 "$1" "$2"
shift $7

xzerofl="1"

echo "x value = $X0"

| z--y0*x | z--y_0*x | z--Y_O0* | z--YOx
flag_dbl "$yzerofl" "$1"
get_option_argument YO "$1" "$2"
shift $7

yzerofl="1"

chemfl="1"

18

)

)

2

z-z2 | z--zsx0% | z--zsx_O0x | z--ZSX_0* | z--ZSX0x* | z--Z/X*)
flag_dbl "$zzerofl" "$1"
get_option_argument ZSX0 "$1" "$2"
shift $7
zzerofl="1"
echo "z value = $ZSX0"
z-s8 | z--START_ATx*)
flag_dbl "$startfl" "$1"
get_option_argument start_evol_at "$1" "§2"

shift $7
startfl="1"

z--)
queryfl="1"
shift
break

zZ-%)
usage
exit 1

is not a valid

"\ eg{1}>°

echo -e "At least one invalid
exit 1

esac

done

if [["$startfl" -ne "1"]1]; then
start_evol_at="prems"

fi

echo "start at = $start_evol_at"

if [["$endfl" -ne "1"]]; then

stop_evol_at="tahb"

fi

echo "end at = $stop_evol_at"

option.

option chosen.\nExiting."

Return number of shifted arguments so calling function can shift

appropriate amount.
return $[orig_number_options -

$#]

function get_option_argument ()

{

Usage:

where VARIABLE is shell variable that will be set to the value

¢--foo=bar’ or

won’t get used if first long option syntax was used.
option isn’t required to have an argument;

#
#
Long option syntax is
#
#

OPTIONAL is non-empty,
if

get_option_argument VARIABLE OPTION ARG {OPTIONAL}

ARG.
3rd argument ARG
If 4 arg

¢--foo bar’.

set to the empty value.

http://www.gnu.org/server/source/diffmon

mit.edu>

the argument is missing, VARIABLE is

Returns number of positions caller should shift
This is imported from:

Thanks: Noah Friedman <friedman@prep.ai.

Called from: parse_command_args

Calls to: usage

local variable="$1"

19

local option="$2"
local arg="$3"
local arg_optional="$4"

All long options must be at least 3 characters long (--o%), whereas
short options are only two chars (-o0) and arguments are always
separate.

if [${#option} -ge 3 -a "z${option#x*=}" != "z${option}"]; then
arg="${option#*=}" # Strip off anything before and including ‘=’
char

#teval ${variablel}=\’"¢${arg}"\’
eval ${variable}="¢${arg}"
return 1

else
if [-z "${arg}" -a -z "${arg_optionall}"]; then
usage "option \‘${option}’ requires argument."
fi
#eval ${variable}=\""${argl}"\’
eval ${variable}="¢${argl}"
return 2
fi

function flag_dbl

{

This function traps options chosen twice by error.
Called from: parse_command_args
Calls to: none

if [["$1" -ne "0"]]; then

echo -e "\nOption $2 has been specified twice. This is ambiguous

.\nExiting."
exit 1
fi

function optconsist

{

This function checks the consistency of different flags and checks
validity of the argument values.

Called from: main

Calls to : checkval, checkflag

H# H H# #®

Set a variable for true/false checking. We shall use it for some
options
tfvar=‘echo "t T f F"°¢

Option -m (mass)

Mass should be between 1 and 100 Msun

if [["$massfl" -eq "1"]1]; then
checkval mass $MTOT O 100

fi

Option -A (age)
Age flag is incompatible with X_c or T_eff
At least final age should be specified
if [["$age_fl" -eq "1" 1]; then
checkflag A "X $xc__f1l O" "T $tefffl 0" "f $ageffl 1"
fi

20

the

Option -i (start of loop)
if [["$ageifl" -eq "1"]]; then
Needs either of -A, -X or -T flags and -f and -s flags
checkflag i "A $age_fl 2" "X $xc__fl 2" "T $tefffl 3 -A or -X or -T"
"f $ageffl 1" "s $agesfl 1"

Initial age/X_c must be lesser/greater than final age/X_c for -A/-
X options.
For -T, this is not imposed
chf1l=0
if [["$age_f1l" -eq "1" 11; then
checkval "initial age" $agei O 15000
chfl=‘echo $agei $agef | awk ’{ print ($1 < $2) 7 "o" : "i" }>¢
elif [["$xc__f1" -eq "1"]J]; then
checkval "initial X_c" $agei 0 1
chfl=‘echo $agei $agef | awk ’{ print ($1 > $2) 7 "o" : "1i" }’¢
fi

if [["$chfl" -eq "1" 1]; then
echo -e "\nThe supplied values of age or X_c are inconsistent
with the sense of evolution.\nExiting\n"
exit 1
fi
fi

Option -f (end of loop)
if [["$ageffl" -eq "1"]]; then
Needs either of -A, -X or -T flags
checkflag f "A $age_f1 2" "X $xc__fl 2" "T $tefffl 3 -A or -X or -T"
if [["$age_£f1" -eq "1" 1]; then
Final age cannot exceed 15 Gyrs
checkval "final age" $agef 0 15000
elif [["$xc__f1" -eq "1"]]1; then
Final X_c must lie between O and 1
checkval "final X_c" $agef 0 1
elif [["$tefffl" -eq "1" J]1; then
Final log Teff must lie between 0 and 5, but allow for bi-
directional sign
checkval "final log Teff" $agef -5.0 5.0
fi
fi

Option -s (step of loop)
if [["$agesfl" -eq "1"]1]; then
Needs either of -A, -X or -T flags and -i and -f flags
checkflag s "A $age_fl 2" "X $xc__£f1l 2" "T $tefffl 3 -A or -X or -T"
"i $ageifl 1" "f $ageffl 1"

checkval "age step" $agestep 0 100000

The step in age must not exceed the total interval of age
adiff=0
if [["$age_f1l" -eq "1" 1]; then
adiff=‘echo $agef $agei $agestep | awk ’{ ad=$1-$2-3%3; print (ad
>= -1e-8) 7 "O" : "i" }¢
elif [["$xc__f1" -eq "1"]J1; then

adiff=‘echo $agei $agef $agestep | awk ’{ ad=$1-3%2-$3; print (ad

21

>= -1e-8) ? non nmqn })(
fi
if [["$adiff" = "1"]1]; then
echo "\nThe step size of age or X_c is larger than the range of
evolution.\nExiting.\n"
exit 1
fi
fi
Option -F ([Fe/H] value)
-F is incompatible with -x, -y or -z
if [["$febyhfl" -eq "1" 1]; then
#checkflag F "x $xzerofl 0" "y $yzerofl 0" "z $zzerofl 0O
checkflag F "x $xzerofl 0" "z $zzerofl O"
fi
Option -x (X0 value)
-x is incompatible with -F, -z and requires -y
if [["$xzerofl" -eq "1" 1]1; then
checkflag x "F $febyhfl 0" "y $yzerofl 1" "z $zzerofl O"
checkval "X0" $X0 0 1
X0=‘awk "BEGIN { printf \")14.6e\", $X0}"°¢

fi

Option -y (YO value)

-y is incompatible with -F
if [["$yzerofl" -eq "1" 1]1;
#checkflag y "F $febyhfl
checkflag y "F $febyhfl 2

-F"
checkval

"YO" $Y0 O 1

YO=‘awk "BEGIN { printf \"%14.6e\",

fi

Option -z (ZSX0 value)

-z is incompatible with -F,
if [["$zzerofl" -eq "1" 1]1;
checkflag z "F $febyhfl O

checkval "ZSXO0" $ZSX0 0 1
ZSX0=‘awk "BEGIN { printf
fi
Option -c (Core overshoot)

and requires either -x or -z

then

0" "x $xzerofl 2" "z $zzerofl 3 -x or -z"
" "x $xzerofl 2" "z $zzerofl 3 -x or -z or

$Y0}"‘

-x and requires -y
then
" "y $yzerofl 1" "x $xzerofl O"

\"%14.6e\", $ZSX0}"¢

The core overshoot parameter must be between 0 and 1

if [L

checkval

"$ovshtsfl" -eq
"OVSHTS"

"1 115
$0VSHTS
fi

Option -N (ignore existing

The option
if [["$newfl" -eq "1" 17;

checkflag N "p $protodont
fi

Option -p (protodon file)

-N is inconsistent with
then

then
01

PROTOMODEL . DON)

-p or -u

1 0" "u $usefl O"

22

if [["$protodonfl"”

The option
checkflag p

-eq "1" 1]; then
-p is inconsistent with
"N $newfl 0"

-N

"\nProtoype $protodonfile not found.\nExiting"

-w NL_CESAM > /dev/null ; echo

"\nThe prototype $protodonfile does not conform to the

This function checks for the dependency and consistency of different

but it works! Will try

Check for existence of protodonfile
if test ! -f $protodonfile ; then
echo -e
exit 1
fi
Check if protodonfile has the correct format
chdon=‘head -1 $protodonfile| grep -i

$7¢
if [["$chdon" -ne "O0"]]; then
echo

standard format.\nExiting."
exit 1
fi

fi

Option -u (update)

The option -u is inconsistent with -N

if [["$usefl" -eq "1" 1]; then

checkflag u "N $newfl O"

fi
X
function checkflag
{

#

flags

Called from: optconsist

Calls to: none

The logic in this function is a bit convoluted,

to
simplify later. Commenting is postponed till then.

errorfl=0

efl=1
testarg=§1
shift
for arg in "$@"
do
set -- $arg
if [["$3" -gt "1"]];then
if [["$2" -eq "1" 1]; then
efl1=0
fi
if [["$3" -gt "2" 1];then
errorfl=%efl
if [["$errorfl" -eq "1" 11;
break
fi
fi
elif [["$2" -ne "$3"]]; then
errorfl=1
break
fi
done

23

then

if [["$errorfl" -eq "1" 1]1; then
echo
if [["$3" -eq "O"]];then
echo "Option -$testarg is incompatible with option -$1"
elif [["$3" -eq "1" 1];then
echo "Option -$testarg requires option -$1 to be specified."
elif [["$3" -gt "1"]1]; then
shift
shift
shift
echo "Option -$testarg requires either option $@ to be specified
fi
echo -e "Exiting.\n"
exit 1

function checkval

{

This function checks the validity of the values of the numerical
arguments passed with the flags.

Called from: optconsist

Calls to: none

No. of arguments: 4

H oH H B H

First check for any leading or trailing garbage with the passed
argument

testval="§2"

lt=${#testvall

let "1t -=1"
declare -a junkar
local junkar=(‘echo "= _ \7 \| / NNVNAL" ANAL2Z ANANNANC N> 2 A8 \NC VD)

\N{ \F N[\1"¢)
local fcr=${testval:0:1}
local lcr=${testval:$1t:1}
for i in ${junkar[@]}

do
if [["$fcr" = "$i" || "$lcr" = "$i"]1]; then
echo -e "The supplied argument of $1 cannot be understood.\
nExiting.\n"
exit 1
fi
done
chf1l=0
chfl=‘echo $2 $3 $4 |awk ’{ print ($1 >= $2 && $1 <= $3) 7 "O" : "1" 3} ¢

if [["$chfl" -eq "1" 1]; then
echo "\nThe $1 value must lie between $3 and $4.\nExiting.\n"
exit 1

function make_dir

{

cd
cd $MODELS_LOC
if [[‘echo $7° -eq 0]]; then
echo "Directory $MODELS_LOC found. Models will be created here."
else
echo -e "$MODELS_LOC is not a valid directory.\nExiting."

24

exit 1
fi
dir_exist models

Extracting the correct master directory
if [[$massfl -gt 0]]; then

MTOT_str=‘echo $MTOT | awk ’BEGIN {FS=" "} {printf "%6.4f",$1/10.0}’
| awk ’BEGIN {FS="."} {printf "Js", $2}°°¢
else
MTOT_str=‘cat $MASTER_LOC/$MDEFAULT/ctl/prems_zams.ctl | grep -w "
RSCLM" | awk ’BEGIN {FS="="} {printf "%6.4f",$2/10.0}’ | awk ?
BEGIN {FS="."} {printf "J%s", $2}°°¢
MTOT=‘cat $MASTER_LOC/$MDEFAULT/ctl/prems_zams.ctl | grep -w "RSCLM"
| awk ’BEGIN {FS="="} {printf "J6.4f",$2}°¢
fi
var=‘echo $MTOT | awk ’BEGIN {FS=" "} {primntf "%3.1£f",$1/10.0}° | awk
BEGIN {FS="."} {printf "%s",$2}’°¢
if [[$var -eq 0 1]; then
var=1
fi

difmin=100000
for i in ‘ls $MASTER_LOC |grep m[0-9][0-9]°
do
j=‘basename $i | cut -c 2-5°¢
dif=‘awk -v m=$MTOT_str -v j=$j ’BEGIN { x=m-j; print (x>=0) ? x : -
x}¢
chosen=‘awk -v dif=$dif -v min=$difmin -v j=$j -v ch=$chosen ’BEGIN
{ print (dif < min) 7 j : ch}’¢
difmin=‘echo $difmin $dif | awk ’{print ($1<$2)7$1:$2}°
done

Making Mixing length directory
if [[$alphafl -gt 0]1]; then

ALPHA_str=‘echo $ALPHA | awk ’BEGIN {FS=" "} {printf "J6.4f",$1
/10.0}° | awk ’BEGIN {FS="."} {printf "Ys", $2}°°¢
dir_exist d$ALPHA_str
else
ALPHA_str=‘cat $MASTER_LOC/m$chosen/ctl/prems_zams.ctl | grep -w "
CMIXLA(1)" | awk ’BEGIN {FS="="} {printf "%6.4f",$2/10.0}’ | awk
’BEGIN {FS="."} {printf "Ys", $2}°°¢

dir_exist d$ALPHA_str
ALPHA=‘cat $MASTER_LOC/m$chosen/ctl/prems_zams.ctl | grep -w "CMIXLA
(1)" | awk ’BEGIN {FS="="} {printf "/6.4f",$23}7¢
fi

Making Core Overshoot directory
if [[$ovshtsfl -gt 0]1]; then

OVSHTS_str=‘echo $0VSHTS | awk ’BEGIN {FS=" "} {printf "J%6.4f",$1}°
| awk ’BEGIN {FS="."} {printf "Ys", $2}°°¢
dir_exist c$0VSHTS_str
else
OVSHTS_str=‘cat $MASTER_LOC/m$chosen/phy/prems_zams.phy | grep -w "
ALPHAC" | awk °’BEGIN {FS="="} {printf "%6.4f",$2}’ | awk ’BEGIN {
FS="."} {printf "%S", $2}7¢

dir_exist c$0VSHTS_str
OVSHTS=‘cat $MASTER_LOC/m$chosen/phy/prems_zams.phy | grep -w "
ALPHAC" | awk °’BEGIN {FS="="} {printf "%6.4f",$2}>°¢

25

#Getting x and z from given febyh value
if [[$febyhfl -gt 0 1]; then

ZSX0=‘${febyhbin}/febyh -f ${febyh} | awk ’*BEGIN {FS=" "} {if (NR
==3) print $3}°°¢

X0=‘${febyhbin}/febyh -f ${febyh} | awk ’BEGIN {Fs=" "} {if (NR==3)
print $13}°°¢

echo "X0 = "$X0",Z0 = "$ZSX0"as computed from febyh value"

xzerofl=1
zzerofl=1
fi

Making Z directory
if [[$zzerofl -gt 0]]; then
ZSX0_str=‘echo $ZSX0 | awk ’BEGIN {FS=" "} {printf "%6.4f",$1%10.0}°
| awk ’BEGIN {FS="."} {printf "Js", $2}°°¢
dir_exist z$ZSXO_str
elif [[$xzerofl -gt O]]; then

ZSX0_str=‘echo 1 $X0 $Y0 | awk ’BEGIN {FS=" "} {printf "%6.4f",($1-
$2-$3)%10.0}° | awk ’BEGIN {FS="."} {printf "Js", $2}°°¢

dir_exist z$ZSXO_str

ZSX0=‘echo 1 $X0 $Y0 | awk ’BEGIN {FS=" "} {printf "%6.4f",($1-$2-$3
)¢

else

ZSX0_str=‘cat $MASTER_LOC/m$chosen/ctl/prems_zams.ctl | grep -w "
ZENVOA" | awk ’BEGIN {FS="="} {printf "%6.4f",$2%10.0}’> | awk °’
BEGIN {FS="."} {printf ")s", $2}°°¢

dir_exist z$ZSXO_str
ZSX0=‘cat $MASTER_LOC/m$chosen/ctl/prems_zams.ctl | grep -w "ZENVOA"
| awk ’BEGIN {FS="="} {printf "J6.4f",$2}°¢
fi

Fetching X value
if [[$xzerofl -eq 0]]; then
if [[$zzerofl -gt 0]]; then

X0=‘echo 1 $ZSX0 $Y0 | awk ’BEGIN {FS=" "} {printf "%6.4f",$1-$2
-$3}¢
else
X0=¢cat $MASTER_LOC/m$chosen/ctl/prems_zams.ctl | grep -w "
XENVOA" | awk ’BEGIN {FS="="1} {printf "%6.4f",$23}7°¢

fi
fi

Making Y directory

YO=¢echo $X0 $ZSX0 | awk ’BEGIN {FS=" "} {printf "%6.4f",1.0-$1-$2}’¢
YO_str=‘echo $Y0 | awk ’BEGIN {FS="."} {printf "Vs",$23}7°¢

dir_exist y$YO_str

Making Mass directory
dir_exist m$MTOT_str

function dir_exist
{
new_dir_£1=0
ls -1 | grep -w $1 > /dev/null
if [[‘echo $7° -eq 0]1]; then
cd $1
if [[‘echo $7¢ -eq O 1]; then
echo -e "Directory \"$1\" already exists. Using the existing
directory."
else

26

echo -e "Directory \"$1\" does not exiss. Creating directory \"
$1\" for further use."

mkdir $1
cd $1

fi

else

echo -e "Directory \"$1\" does not exist. Creating directory \"$1\"
for further use."

new_dir_f1l=1

mkdir $1
cd $1
fi
}
function copy_files
{
if [[$usefl -eq O 1]; then
echo "Copying the required master files into the working directory."
if [[$MTOT_str = 2100 1]; then
cp -r $MASTER_LOC/#2100/ctl/${1}.ctl ctl/${1}.ctl
cp -r $MASTER_LOC/#2100/phy/${1}.phy phy/${1}.phy
echo "Files copied from ‘echo $MASTER_LOC/#2100/°¢"
else
if [[$MTOT_str = 2000 1]; then
cp -r $MASTER_LOC/#2000/ctl/${1}.ctl ctl/${1}.ctl
cp -r $MASTER_LOC/#2000/phy/${1}.phy phy/${1}.phy
echo "Files copied from ‘echo $MASTER_LOC/#2000/ "
else
if [[$MTOT_str = 2200]]; then
cp -r $MASTER_LOC/#2200/ctl/${1}.ctl ctl/${1}.ctl
cp -r $MASTER_LOC/#2200/phy/${1}.phy phy/${1}.phy
echo "Files copied from ‘echo $MASTER_LOC/#2200/ "
else
cp -r $MASTER_LOC/m$chosen/ctl/${1}.ctl ctl/${1}.ctl
cp -r $MASTER_LOC/m$chosen/phy/${1}.phy phy/${1}.phy
echo "Files copied from ‘echo $MASTER_LOC/m$chosen/*‘"
fi
fi
fi
#cp -r $MASTER_LOC/mchck/ctl/${1}.ctl ctl/${1}.ctl
#cp -r $MASTER_LOC/mchck/phy/${1}.phy phy/${1}.phy
#echo "Files copied from ‘echo $MASTER_LOC/mchck/*“"
fi
}

function prepare_directory
{
if [[$start_evol_at = "prems"]1]; then
echo -e "Preparing working directory."
if [[$new_dir_f1l -eq 0 1]; then
echo "Removing existing data files."
mkdir $MODELS_LOC/models/temp
cp -r ctl $MODELS_LOC/models/temp/
cp -r phy $MODELS_LOC/models/temp/

rm -r *
cp -r $MODELS_LOC/models/temp/*
rm -r $MODELS_LOC/models/temp
echo "Clean-up complete."
else

27

mkdir ctl
mkdir phy
fi
cp $MASTER_LOC/m$chosen/yrec7.batch
fi

function choose_homfile

{

This function chooses the initial baseline model to use
Called from: main
Calls to: none

First check the closest baseline file if at all any exist
aschomexist=‘1ls ${pathhom}/bl.m*a &> /dev/null ; echo $7°¢
if [["$aschomexist" -eq "0"]1]; then

Run through the available baseline models to determine the closest

and also

store the difference in mass with the closest match

availar=(‘ls ${pathhom}/bl.m*a‘)

difmina="0.05"

for i in ${availar[@]}

do
mcomp=‘basename $i | cut -c5-7 | sed ’s/p/./’°¢
mdiff=‘awk "BEGIN { x=$MTOT-$mcomp; print (x>=0) 7 x : -x }"°¢
closest=‘awk "BEGIN { print $mdiff < $difmina 7 1 : O }"¢
if [["$closest" -eq "1" 1]; then
homfile=8$i
choosen="1"
break
fi
done

if [[$choosen -ne 1]]; then
echo "No suitable baseline model file found. Exiting."
exit 1
else
echo -e "Baseline model has mass $mcomp\nRescale mass is $MTOT"
echo "Rescale mass differs from baseline mass by $mdiff"
fi
else
echo "No baseline model files found. Exiting."
exit 1
fi

This is a double check. If the logic above is correct, we need not
check

for the existence of the file. But still

if [! -f $homfile]; then
echo "Baseline model file $homfile not found. Exiting."
exit 1

fi

if [["$queryfl" -ne "1" 1]; then
echo "Using baseline model $homfile"
fi

function prepctl

{

#This function prepares the default ctl files copied into the working

28

directory
#and renames it to the format mMMMM_stage_stage.ctl
#It also calls yrec7.x and creates the models
#After this it EXITS

#MassSTring extracts mMMMM if the current working directory contains
such a string
MST="m$MTOT_str"

#ARR=(prems_zams zams_tams tams_brgb brgb_rgbl rgbl_rgb2 rgb2_rgb3
rgb3_rgb4 rgb4_rgb5 rgbb_rgb6 rgb6_trgb trgb_zahb zahb_tahb)
#ARR=(prems_zams zams_tams tams_brgb brgb_rgbl rgbl_zahb zahb_tahb)
ARR=(prems_zams zams_tams tams_brgb brgb_rgbl rgbl_rgb2 rgb2_rgb3

rgb3_trgb trgb_zahb =zahb_tahb)
#ARR=(prems_zams zams_tams tams_brgb brgb_rgbl rgbl_rgb2 rgb2_rgb3
rgb3_rgb4 rgb4_trgb trgb_zahb zahb_tahb)

donedit yrec7.batch FNML1 \’ctl/$MST.ctl\’
donedit yrec7.batch FNML2 \’phy/$MST.phy\’

flag=0
for k in ${ARR[e]}
do
if [["$INITIALIZED" -eq "O" 1]; then
if [["${start_evol_at:0:4}" == "${k:0:4}"]1]; then
INITIALIZED="1"
else

continue
fi
fi
copy_files $k
str="d${ALPHA _str}c${0VSHTS_ _str}z${ZSX0_str}y${YO_str}m${MTOT_str}"
#change description
if [["$k" == "prems_zams"]]; then
donedit ctl/$k.ctl RSCLM $MTOT
donedit ctl/$k.ctl RSCLX $XO
donedit ctl/$k.ctl XENVOA $XO
donedit ctl/$k.ctl RSCLZ $ZSX0
donedit ctl/$k.ctl ZENVOA $ZSXO
donedit ctl/$k.ctl FFIRST \’$homfile\’
if [["$ngfl" -ne "1"]1]; then
echo -n "set yrange [-0.7:3.2]; set xrange [4:3.55]; p " >
hrplot
echo -n "set multiplot; set yrange [4.4:2.2]; set xrange
[4:3.55]; p " > gtplot
fi
if [[$MTOT_str -ge 1600 && $MTOT_str -le 1800]]; then
donedit ctl/$k.ctl "SENVOA(5)" 1.0D-9
donedit ctl/$k.ctl "SENVOA(4)" 1.0D-9

fi
else

donedit ctl/$k.ctl FFIRST \’${MST}.${k:0:4}\"
fi
if [["$k" == "tams_brgb"]]; then

mass=‘echo $MTOT_str.0 1000.0 | awk ’BEGIN {FS=" "} {printf
"%5.3f",$1/82} ¢
if [[$MTOT_str -ge 1600 && $MTOT_str -le 2100]]; then
brgb_age=‘echo $mass | awk ’{printf "%6.4f",97.9802xexp
(-2.57244%$1)+0.365894} " ¢
elif [[$MTOT_str -ge 1000 && $MTOT_str -1t 1600 11; then
brgb_age=‘echo $mass | awk ’{printf "J6.4f" ,667.871*xexp
(-4.1963%$1)+1.225569} ¢

29

fi
donedit ctl/$k.ctl ENDAGE ${brgb_age}D+09

fi
if [["$k" == "brgb_rgbl"]]; then
mass=‘echo $MTOT_str.0 1000.0 | awk ’BEGIN {FS=" "} {printf
"%5.3f",$1/82} ¢
if [[$MTOT_str -ge 1600 && $MTOT_str -le 2100]1]; then
rgbl_age=‘echo $mass | awk ’{printf "%6.4f",50.2044*exp
(-2.08064%$1)+0.206441} ¢
elif [[$MTOT_str -ge 1000 && $MTOT_str -1t 1600]]; then
rgbl_age=‘echo $mass | awk ’{printf "J6.4f",600.595*exp
(-4.04844%$1)+1.22738} ¢
fi
donedit ctl/$k.ctl ENDAGE ${rgbl_age}D+09
fi
if [["$k" == "rgbl_rgb2" 1]; then
mass=‘echo $MTOT_str.0 1000.0 | awk ’BEGIN {FS=" "} {printf
"%5.3f",$1/82} ¢
if [[$MTOT_str -ge 1600 && $MTOT_str -le 2100]]; then
rgb2_age=‘echo $mass | awk ’{printf "%6.4f",76.3197*exp
(-2.33896*$1)+0.293359} ¢
elif [[$MTOT_str -ge 1000 && $MTOT_str -1t 1600]11; then
rgb2_age=‘echo $mass | awk ’{printf "J6.4f" ,608.527*exp
(-4.05862%$1)+1.32109} ¢
fi
donedit ctl/$k.ctl ENDAGE ${rgb2_age}D+09
fi
if [["$k" == "rgb2_rgb3" 1]; then
echo $MTOT_str
mass=‘echo $MTOT_str.0 1000.0 | awk ’BEGIN {FS=" "} {printf
u%5‘3fn’$1/$2}7 ¢
if [[$MTOT_str -ge 1600 && $MTOT_str -le 2100 11; then
rgb3_age=‘echo $mass | awk ’{printf "J6.4f" ,67.8887*exp
(-2.25807*$1)+0.279895} 7 ¢
elif [[$MTOT_str -ge 1000 && $MTOT_str -1t 1600]]; then
rgb3_age=‘echo $mass | awk ’{printf "%6.4f",584.916%exp
(-4.00963*$1)+1.29851} ¢
fi
donedit ctl/$k.ctl ENDAGE ${rgb3_age}D+09
fi
if [["$k" == "rgb3_trgb"]1]; then
donedit ctl/$k.ctl ENDAGE 12D+09
fi
if [["$k" == "trgb_zahb"]]; then
donedit ctl/$k.ctl ENDAGE 12.0D+09
fi
if [["$k" == "zahb_tahb"]]; then
donedit ctl/$k.ctl ENDAGE 12.0D+09
fi

donedit ctl/$k.ctl CMIXLA $ALPHA

donedit phy/$k.phy ALPHAC $0VSHTS

donedit ctl/$k.ctl FTRACK \’$str_$k.track\’

donedit ctl/$k.ctl FSHORT \’$str.short)\’

donedit ctl/$k.ctl FPMOD \’$str\’

donedit ctl/$k.ctl FPENV \’$str\’

donedit ctl/$k.ctl FPATM \’$str\’

#rewrite the string mMMMM

#FinalNameExtension extracts the final stage name eg tams

FNE="‘expr ${k} : ’.*\(_[a-z][a-z][a-z][a-2,0-9]\)’ lcut -c2-5‘"

#name of last model from which evolution of next stage should start
eg. m0200. zams

30

end_of_run_model="${MST}.${FNE}"
#if [[-f $starting_model_file]]; then
sed -i "/FLAST=/c\ FLAST=’$end_of_run_model’" ctl/$k.ctl

cd ctl

In -sf $k.ctl ${MST}.ctl
cd ../phy

ln -sf $k.phy ${MST}.phy
cd

if [[flag -eq 0 1]; then
echo Running YREC now...
fi
flag=‘expr $flag + 1°¢
echo $k >>stagetime
if [["$ngfl" -ne "1"]1]; then
if [["$k" == "prems_zams"]]; then
echo -n "\"$str_$k.track\"u 7:4 w 1lp" >>hrplot
echo -n "\"$str_$k.track\"u 7:6 notitle w 1lp" >>gtplot

else
echo -n ",\"$str_$k.track\"u 7:4 w 1lp" >>hrplot
echo -n ",\"$str_$k.track\"u 7:6 notitle w 1lp" >>gtplot
fi
fi
(time yrec7.x) 2>>stagetime
rename

crash_check $k
if [[‘echo $7¢ -eq 0 1]1; then
echo -e "Run of ${k} failed. Check crash report for details.\
nExiting."

exit 1

fi

if [["$7" -eq "O" && $end_of _run_model -nt $starting_model_file]1];
then
echo
echo "Run of ${k} done"
echo

else
echo
echo "Run of ${k} failed. Exiting"
echo "crash=$flag"

exit 1

fi

head -1 $k.flg >/dev/null 2>/dev/null

if [["$stop_evol_at" == "$FNE"]]; then
ALLDONE="1"

fi

if [["$ALLDONE" -eq "1"]1]; then
echo
echo "All runs completed sucessfully"
echo "crash=0"
exit

fi

done

sed -i ’$s/.$//’ hrplot

sed -i ’$s/.8/; /’ gtplot

echo "set origin 0.4,0.1; set size 0.4,0.4; set xrange [3.65:3.66]; set
yrange [2.1:2.5]; set xtics 0.01 set ytics 0.1; replot" >> gtplot

=+

function donedit

{

31

This function modifies the ctlfile (first arg) by replacing the
existing

value of a parameter (second arg) with a supplied value (third arg).

sed -i "/~ $2/s%=.%%=$3%" $1

}
function rename
{
echo "Renaming files. This may take a few seconds..."
for j in ‘ls *_x*.short®
do FILE_str="${j:0:25}"
AGE_str=‘cat $j | grep "AGE(GYRS)" | awk ’BEGIN {FS=" "} {printf
"%7.5f",$8/100.0}° | awk ’BEGIN {FS="."} {printf "Js",$23}°¢
mv ‘basename $j .short‘.pmod ${FILE_str}a${AGE_str}.pmod
mv ‘basename $j .short‘.patm ${FILE_str}a${AGE_strl}.patm
mv ‘basename $j .short ‘.penv ${FILE_str}a${AGE_str}.penv
mv $j ${FILE_str}a${AGE_str}.short
done
echo "Renaming complete."
}

main "$@"
exit O

13.2 Appendix B: Other Scripts
#!/bin /bash

Script to check the number of models lying in a user—specified g—T box
Stand Alone.

Used in none.

Jayant Thatte, December 2011

INFO: The script scans all the .pmod files in the directory from which it is called.

ARGUMENTIS: None.
OUTPUT: Outputs number of models in the g-T to the standard output.
OUIPUT: Writes the ages of these models to a file called ‘box models’.

function initialise

{
tHAARAAAAAAF User Configurable Part Begins #55HAAFRAAHA

dr=$PWD
lgsun=4.43775
It min=3.65

It max=3.66
lg min=2.1

lg max=2.5

HAAAAAAAAAAA User Configurable Part Ends s55HHHAHAHAAA

count=0

}

function extract # Extracts the required values from the .pmod files and recursively check
{
cd $dr
rm box_models 2> /dev/null
for i in ‘ls x.pmod‘
do m_msun=‘cat $i | grep MASS | awk ’{print $2}’°

32

lt=‘cat $i | grep TEFF | awk ’{print $4}°°
Ir_rsun=‘cat $i | grep R/RSUN | awk ’{print $4}’°
lg=‘echo $lgsun $m msun $lr rsun | awk ’{var=$1+log(9%$2)/log(10)—2%x$3; prin

It flag—=‘echo $1t $lt min $lt max | awk ’{print (($2 <= $1) && ($3 >= §1))
lg flag=‘echo $lg $lg min $lg max | awk ’{print (($2 <= $1) && ($3 >= §1))

if [[$lg flag —eq 1 && $lt flag —eq 1]]; then
ok=1
count—‘expr $count + 1°
basename $i .pmod >> box models
fi
done
echo $count

}

function main

{
initialise "$@"
extract "$Q"

}

main "$Q"

exit 0O

#!/bin /bash

A script which checks all the stages of a particular run
Uses ‘crash check”’

Used in none.

Tamaghna Hazra, December 2011

ARGUMENTS: None.
OUTPUT: Outputs to the standard output, the stages in which Yrec encountered a problem

for i in prems zams zams tams tams brgb brgb rgbl rgbl rgb2 rgh2 rgh3 rgh3 trgb trgb =zahb
do

crash check $i | grep FATAL
done

#!/bin /bash

A script which plots several graphs which help in checking sanity of a model
Stand Alone

Used in none.

Jayant Thatte, December 2011

INFO: Takes required data from the .track files.
ARGUMENTS: None.
OUTPUT: Generates a Gnuplot file f‘check plot’. Load this in Gnuplot to view these graphs

filename—="‘echo $PWD | awk ’BEGIN {FS="/"} {print $6$7$8%9%10} °

cat crash 2> /dev/null
echo "set multiplot; set size 0.5,0.5; set origin 0,0; set title \"no. of mesh points vs a

33

#!/bin /bash

This script checks whether a given stage of Yrec went through successfully.
Stand Alone.

Used in ‘checkall ’, ‘runyrec’ and ‘testall ’.

Jayant Thatte, December 2011

INFO: Checks whether the user specified run has ended according to at least one of the ¢
INFO: This script is also incorporated in ‘runyrec’ to stop Yrec from running subsequent

OUTPUT: Generates a crash report file named <stage name>.crash for the particular stage
OUIPUT: Generates a file called main.crash containing the crash reports of all stages fo
OUTPUT: Also generates an empty <stage name>.flg file if a certain stage has crashed. Tl

function initialise

{
model n=1
age=3
xc=26
hit n=0
hit a=0
hit x=0
filename=‘echo $PWD | awk ’'BEGIN {FS="/"} {print $6"c0000"$8$9%10} ¢
ARR=(prems zams zams_tams tams brgb brgb rgbl rgbl rgb2 rgh2 rgh3 rgh3 trgh)
safety factor=2
it [[$1 = "prems_zams" |]; then
prev_run=x
elif [[$1 = "zams_tams" |]; then
prev_run=prems _ zams
elif [[$1 = "tams_brgh"]]; then
prev_run—=zams_ tams
elif [[$1 = "brgb_rgb1"]]; then
prev_run=tams_brgb
elif [[$1 = "rgbl_rgb2" |]; then
prev_run=brgb rgbl
elif [[$1 = "rgb2_rgh3"]]; then
prev_run—-rghl rgh2
elif [[$1 = "rgb3_trgh"]]; then
prev_run=rgh2 rgb3
else
echo $1 is not a valid run—stage "in" Yrec. Exiting.
fi
}

function get last # Extracts information about the last model of the specified stage.
{
tail —1 $filename_$1.track >/dev/null 2>/dev/null
if [[‘echo $?¢ —ne 0]]|; then
echo —e File §$filename_ $1.track does not exist.
echo —e Crash report not updated. exiting.

exit
fi
last_model curr=‘tail —1 $filename_ $1.track | awk ’BEGIN {FS=" "} {print $1}’°
if [[$1 != "prems_zams"]]|; then
last_model prev=‘tail —1 $filename_S$prev_run.track | awk ’BEGIN {FS=" "}
str_to_num $last model prev > j
last model=‘cat j°
else
last model prev=0
fi

last _age=‘tail —1 $filename\ $1.track | awk 'BEGIN {FS=" "} {print $3}’°

34

last _xc=‘tail —1 $filename\ $1.track | awk 'BEGIN {FS=" "} {print $26}’°

str _to_num $last model curr > j
last model curr=‘cat j°

last model=‘echo $last model curr $last model prev | awk ’{var=$1-$2} END {print v

str _to_num $last age > j # in Gyrs
last _age=‘cat j°
last _age=‘echo $last age | awk ’'{var=$1lxexp(9xlog(10))} END {print var}’‘

str_to_num $last_xc >j
last _xc=‘cat j°*

}

function get condition # Extracts the user—specified stopping criteria from the .ctl file
{
cat ctl/$1.ctl >/dev/null 2>/dev/null
if [[‘echo $?‘ —ne 0]]; then
echo —e File ctl/$1.ctl does not exist.
echo —e Crash report not updated. exiting.
exit
fi
nmodels=‘cat ctl/$1.ct]l | grep NMODIS | awk ’BEGIN {FS="="} {print $2}’ | awk ’'BEG
endage=‘cat ctl/$1.ctl | grep ENDAGE | awk 'BEGIN {FS="="} {print $2} ¢
endxc=‘cat ctl/$1.ctl | grep ENDXC | awk 'BEGIN {FS="="} {print $2}’¢

str_to_num $nmodels >j
nmodels=‘cat j°

str_to_num $endage >j
endage=‘cat j°*

str_to_num $endxc >j
endxc=‘cat j°

}

function get step # Calculates age stepping and the stepping in core hydrogen content

{
age step=‘tail —2 $filename\ $1.track | awk ’BEGIN {ageprev=0} {age step=$3—agepre
xc_step=‘tail —2 $filename\ $1.track | awk 'BEGIN {xcprev=0} {xc_step=xcprev—9$26 ;

str_to_num $age step >] # in Gyrs
age step=‘cat j°
age_step=‘echo $age_step | awk '{var=$lxexp(9xlog(10))} END {print var}’‘

str_to_num $xc_step >j
xc_step=‘cat j°

rm j

age tol=‘awk —v sf=8§safety factor —v as=8%age step ’BEGIN {print sfxas}’‘
xc_tol=‘awk —v sf=$§safety factor —v xs=8%xc_step ’BEGIN {print sfxxs}’‘

}

function check # Checks if the stage stopped due to at least one of the criterion.
if [[$nmodels —eq $last_model]]; then
hit n-=1
fi

age_cor=‘echo $endage $last_age | awk ’'{var=$1-$2} END {print var}’‘

35

}

xc_cor=‘echo $last xc $endxc | awk ’{var=$1-%2} END {print var}’‘

hit _a=‘echo $age cor $age tol | awk ’{print (($1 <= $2) (
hit _x=‘echo $xc_cor $xc_tol | awk '{print (($1 <= $2) && ($1 >= 0))

&& 1: 0}

$1 >= 0)) ?
71 0}¢

function report gen # Generates a report having details about the stage.

{

}

rm $1.crash 2> /dev/null
if [[$hit_n —eq 0 && $hit_a —eq 0 && $hit_x —eq O ||; then

fi

touch $1.flg

echo —e "\n"FATAL\! Yrec encountered severe problem "in" stage $1.>> §1.cr.
echo —e This run has terminated "in" an unexpected manner.>> §1.crash

echo —e Consider discarding the run and starting again with better paramet
echo —e NMODLS=$nmodels"\t\t"Last model no. $last model"\t\t"Cum. model no
echo —e ENDAGE=$endage "\t"Age of "last" model = $last age"\t"Age step = §
echo —e ENDXC=$endxc"\t\t"X ¢ of "last" model = $last xc"\t\t"X c step = §

if [[S$hit_n —eq 1]]; then

fi

rm $1.flg 2> /dev/null

echo —e "\n"The stage $1 completed successfully.>> $1.crash

echo —e Stopping condition\: NMODLS"\n">> §1.crash

echo —e NMODLS=$nmodels"\t\t"Last model no. $last_model"\t\t"Cum. model no
echo —e ENDAGE=$endage "\t"Age of "last" model = $last age"\t"Age step = §
echo —e ENDXC=$endxc"\t\t"X c¢ of "last" model = $last xc"\t\t"X c step = §

if [[$hit_a —eq 1]]; then

fi

rm $1.flg 2> /dev/null

echo —e "\n"The stage $1 completed successfully.>> §1.crash

echo —e Stopping condition\: ENDAGE>> $1.crash

echo —e NMODLS=$nmodels"\t\t"Last model no. $last model"\t\t"Cum. model no
echo —e ENDAGE=$endage "\t"Age of "last" model = $last age"\t"Age step — §
echo —e ENDXC=$endxc"\t\t"X ¢ of "last" model = $last xc"\t\t"X c step = §

if [[$hit_x —eq 1]]; then

fi

rm $1.flg 2> /dev/null

echo —e "\n"The stage $1 completed successfully.>> §1.crash

echo —e Stopping condition\: ENDXC"\n">> §1.crash

echo —e NMODLS=$nmodels"\t\t"Last model no. $last_model"\t\t"Cum. model no
echo —e ENDAGE=$endage "\t"Age of "last" model = $last age"\t"Age step = §
echo —e ENDXC=$endxc"\t\t"X c¢ of "last" model = $last xc"\t\t"X c step = §

rm main.crash 2> /dev/null

for i in ${ARR|Q]}

done

do cat $i.crash >> main.crash 2>/dev/null

ls =.flg 2>/dev/null >/dev/null
‘echo $7¢ —eq 0 |]; then

if]
else

fi

touch crash

rm crash >/dev/null 2>/dev/null

function str to num # Converts the numbers in <.>E<..> format to understandable form.

{

flag=X

it [

elif

‘echo $1 | grep e | we -1 —eq 1]]; then

[

flag=e
‘echo $1 | grep E | we =1 —eq 1]]; then
flag=E

36

elif [[‘echo $1 | grep d | we —1° —eq 1 |]; then

flag=d
elif [[‘echo $1 | grep D | wec —1‘ —eq 1]]; then
flag=D
fi
if [[flag != "X"]]; then
echo $1 | awk —F $flag ’{var=$1x(exp(3$2xlog(10)))} END {print var}’
else
echo $1
fi
}
function main
{
initialise "$Q"
get last "$Q@"
get _condition "$Q"
get step "$@"
check "$Q"
report _gen "$Q@"
cat $1.crash
}
main "$Q"

#!/bin /bash

Jayant Thatte, December 2011

Read usage

if [[‘echo $#‘ —eq 0 |]|; then
less << EOU

Usage:

ARGUMENTS: Name of the .freq file should be given, without the extension, as the first arg:
ARGUMENTS: If a different value of large separation, than what is calculated in the .struc

OUTPUT: The script generates a gnuplot file named <p> and launches Gnuplot. Load <p> in Gr

EOU
else
time hmarun _editting —adi $1.pmod
if [[‘echo $#°‘ —eq 2]]|; then
large sep=$2
else
large _sep=‘cat "$1.struc" | grep —w "Delta Nu" | awk ’BEGIN {FS=" "} {prin
fi
cat "$1.freq" | awk 'BEGIN {FS=" "} {column=($3%’$large_sep’)/’$large_sep ’; print
echo $1.ech generated successfully.
for j in ‘seq 0 3°¢
do cat $1.ech | awk —v k=$j ’'BEGIN {FS=" "} {if ($1 = k) print $1,"\t"$2,
done
echo p \"$1.echO\" u 6:3,\"$1.ech1\" u 6:3,\"$1.ech2\" u 6:3,\"$1.ech3\" u 6:3 > p
gnuplot
fi

37

#!/bin /bash

Edited by Jayant Thatte, December 2011.
Original script: hmarun.sh

Suitable changes have beem made to ‘basic quants’ and ‘config jcd’ functions.
Changes inlcude changes in FSTART, FEND, iscan and a few extra ‘echo’ statements.

function usage ()

{
}

function main ()

echo "Usage: ‘basename $0°‘ [——struc]| [-—adi] [-—hma] [-—jig] <modelfilename >"

if [["$#" —1t "1"]]; then
usage
exit 1

fi

initialise flags

parse _command args "$Q"
shift $7

basic _quants $SFILENAME

if || "$hmafl" —eq "1" || "$adiplsfl" —eq "1" || "$strucfl" —eq "1"]]; then
echo —n "Writing out structure file..."
makestruc

echo "done"
fi

if [["$jigfl" —eq "1"]]; then
echo —n "Using JIG6 to compute frequencies...
makejig
echo "done"

fi

if [["$hmafl" —eq "1"]]; then
echo —n "Using H. M. Antia’s code to compute frequencies..."
makehma

echo "done"
fi

if [["$adiplsfl™ —eq "1"]]; then
echo —n "Using ADIPLS to compute frequencies..."
makeadipls
echo "done"

fi

exit

}

function initialise flags ()

{
strucfl="0"
adiplsfl="0"
hmafl="0"
jigfl="o"
strucfl="0"
}

38

function parse command args ()

{

This function parses the command—line arguments

This is imported from: http://www.gnu.org/server/source/diffmon
Thanks: Noah Friedman <friedman@prep.ai.mit.edu>

Called from: main

Calls to: get option argument, flag dbl, usage

local orig number options=$#

If you add new options be sure to change the wildcards below to make

sure they are unambiguous (i.e. only match one possible long option)

Be sure to show at least one instance of the full long option name to
document what the long option is canonically called.

4)

Long options which take arguments will need a ‘x’ appended to the
canonical name to match the value appended after the ‘=’ character.
while [$# —gt 1 |; do
case z$1 in
z—stru x| z—STRUx)
shift
strucfl="1"

z—adix | z—ADIx)

shift

adiplsfl="1"
z—hmax | z—HMAx)

shift

hmafl="1"

z—jigx | z—JIGx)
shift
jigfl="1

z—)
shift
break

z—%)
echo "‘basename $0°‘:\ ‘${1}’ is not a valid option."
usage
exit 1

*)
break

esac
done

FILENAME="§1"

}

function basic_quants ()

{
GRAVCON="6.67259¢ 8"

PI—-"3.1415926535898"
SOLSCALE="2.429032"

MASSSTUB="8 { 1:20:5} "

39

FILESTUB="${1:0:31} "
IDTYPE="8§ {1:25:1}"

PMODFILE="$ {FILESTUB } . pmod"
PENVFILE="${FILESTUB }. penv"
PATMFILE="${FILESTUB }.patm"

NMESH="*‘grep SHELLS ${PMODFILE} |awk ’{print $8} ‘"

MASS="‘grep MASS ${PMODFILE}| awk ’{printf \"%5.3f\n\", $2} "
RADIUS="‘grep \"R/RSUN\" ${PMODFILE}| awk ’'{printf \"%5.3f\n\"
SCALE="‘awk —v rad=\"$RADIUS\" —v mas=\"$MASS\" ’'BEGIN {print

if [| "SIDTYPE" — "x" ||; then

XCFLAG="1"

XC="‘echo ${FILESTUB:6:4}| awk '{printf "%11.5¢", $1/10000} ‘"
elif [["SIDTYPE" — "a" || "SIDTYPE" — " " |]; then

XCFLAG="0"

AGE="‘echo ${FILESTUB:6:4}| awk ’{printf "%11.5¢", $1/1000}’‘"
else

echo "File is not identified by age or Xc, exiting."

exit 1
fi
if [| "$XCFLAG" =— "1" ||; then

echo "Mass $MASS M/Msun; Xc $XC ; Radius $RADIUS R/Rsun"
else

echo "Mass $MASS M/Msun; Age $AGE Gyrs; Radius $RADIUS R/Rsun"
fi
echo "Sqrt(rhobar/rhobar_sun) $SCALE"

, 10xx§4} 7"
(rad >0) 7 sqrt(mas/r.

SCFLAG="‘echo $SCALE | awk ’{print ($1==1.00000) ? "0" : "1"}’ <"

if [["$SCFLAG" —eq "0"]]; then

echo "Scaling factor not found. Exiting."
exit 1
fi

FSTART="‘echo $SCALE | awk ’{printf "%6.3f", 0.1x$1} "
FEND="‘echo $SCALE | awk ’{printf "%6.3f", 2«81} "
FDEL="‘echo $SCALE | awk ’{printf "%f", 50«$1} <"

FSTART mu="‘echo $SCALE | awk ’{printf "%9.3f", 1000%0.1x$1} ‘"
#END _mu="‘echo $SCALE | awk ’{printf "%9.3f", 1000x5x$1} "

Get only low order modes — reduce FEND mu in JIG6

FEND mu="‘echo $SCALE | awk ’{printf "%9.3f", 1000%3x$1} "
#FDEL_mu="‘echo $SCALE | awk ’{printf "%f", 5.0x$1}’ "

Get the g—modes for a giant — reduce scanning interval

FDEL mu="‘echo $SCALE | awk ’{printf "%f", 2.0x$1} ‘"

##HPSTART="‘echo $FEND | awk —v pi="$PI" ’{printf "%6.3f", 1/(2xpix$1)

}7("

#HHPEND="‘echo $FSTART | awk —v pi="$PI" ’{printf "%6.3f", 1/(2xpix$1)} "
##HPDEL=""‘echo $FDEL | awk —v pi="$PI" ’{printf "%6.3f", 1/(2xpix$1)} "

}

function makestruc ()

{

STRUCSAMPLE="/data/research /YREC/SAMPLES/struc .nml"
MODELEXTR="/data/research /YREC/BIN/modextr yrec.x"

STRUCFILE="$ {FILESTUB } . struc"

if [["$hmafl" —eq "1"]]; then
AVARFILE="$ {FILESTUB } . avar "

40

else

AVARFILE="\\\/dev\\/null"

fi

if [["$adiplsfl"™ —eq "1"]]; then
ADIPLSFILE="${FILESTUB } . mjcd"

else

ADIPLSFILE="\\/dev\\/null"

fi

echo "

s/pmodfile /${PMODFILE} /
s/penvfile /${PENVFILE}/
s/patmfile /$ {PATMFILE} /
s/strucfile /${STRUCFILE}/
s/adiplsfile /${ADIPLSFILE}/
s/avarfile /${AVARFILE}/

" > SED$$

sed —f SED$$ $STRUCSAMPLE > struc .nml

$MODELEXTR #> /dev/null
rm —f SED$$ struc.nml

}

function makejig ()

{

JIGCODE="/data/research /JIG/BIN/jig6a .x"
SORTCODE="/data/research /JIG/BIN/sortmodes.x"
JIGSAMPLE="/data/research /JIG /SAMPLES/jig6a .nml"
JOUTFILE-"$ {FILESTUB}. jout "

FJIGEXT="fjig"

FREQDETFILE="${FILESTUB }. fdet "

FREQFILE="$ {FILESTUB} . § {FJIGEXT}"

echo "

s/pmodfile /$§{FILESTUB }.pmod/
s/penvfile /${FILESTUB}. penv/
s/patmfile /${FILESTUB}.patm/
s/outputfile /${JOUTFILE}/
JFSTART/c\ FSTART-$FSTART mu
JFEND/c\ FEND=$FEND_mu
JFDEL/c\ FDEL=$FDEL_mu

" > SED$$

###4# Scan in periods — not working in JIG677
##4#/PSTART/ c\ PSTART-$PSTART

##4#/PEND/ c\ PEND=$PEND

##+4#/PDEL/ ¢\ PDEL=$PDEL

sed —f SED$$ $JIGSAMPLE > jig6a .nml

rm —f SEDS$$

$JIGCODE

rm —f SCRATCH.OUT

"

#echo —mn "Sorting
if [[—f $JOUTFILE |]|; then

41

echo "1
$JOUTFILE
2
$JOUTFILE
5" > SRT$$
fi

$SORTCODE < SRT$$ > /dev/null
echo "# 1 np ng nu(microHz)" > ${FREQFILE}
awk ’{printf "%5i%4i%4i %12.3f\n",$8,$4, $6, $10}’ ${JOUTFILE} s >> ${FREQFILE}

rm —f SRT$$ sum
#mv ${JOUTFILE} s ${FREQDETFILE}

rm ${JOUTFILE} s ${JOUTFILE} ${JOUTFILE} t
#mv ${JOUTFILE} t ${FREQFILE}

#echo "done"

}

function makehma ()
{

HMACODE="/data/research /astero/progs/bin/freq2.2"

BOUNDCOND="ando"

##BOUNDCOND="free" —> delta p =0

it [["$adiplsfl"™ —ne "1" && "§$jigfl" —ne "1"]]; then
FHMAEXT="freq"

else
FHMAEXT="fhma"

fi

FREQDETFILE—"$ {FILESTUB}. fout "
FREQFILE="$ {FILESTUB } . $ {FHMAEXT} "

if [[—f "SAVARFILE"]]; then
NN="‘head —1 $AVARFILE | awk ’{printf \"%i\", $5/2 —1}’¢"
else

echo "$AVARFILE not found. A(i) variables not calculated by $MODELEXTR.

exit 1
fi

echo "’$AVARFILE’
$NN 1 2

1084

011 10

BOUNDCOND

T~ BT =

$FREQDETFILE’
'$FREQFILE’

/
0 31 1 100 $FSTART $FEND

10 5 /" > freq.inp
$HMACODE < freq.inp > /dev/null

rm —f freq.inp models TEMP fort.x egvtx invcof

}

42

Exiting"

function config jecd

{

This function sets the file names, frequency limits etc. for
JCD’s frequency code, ADIPLS.

Path for ADIPLS root directory
freqpath="/data/research /ADIPLS"

Name of ADIPLS executable for frequency calculations

—— mneed not be changed wusually
MAKEFREQ="${freqpath}/bin/adipls.n.d"

Name of sample input file for ADIPLS frequency calculation
FREQINPF="/data/research /ADIPLS/samples/adipls.n.in"

Name of ADIPLS executable for redistribution of mesh
—— need not be changed usually
REDISTRIB="${freqpath}/bin/redistrb .d"
Name of sample input file for ADIPLS redistribution of mesh points
REDISTRF="/data/research /ADIPLS/samples/redistrb.in"
Choose whether redistribution of mesh will be done. By default it is NOT
done (ver. 2.1.1). Set to "1" to enable.
redistrfl="0"

Name of ADIPLS executable for frequency output from summary file

If this is set—obs.d then we need to set the option value also.

If rotational kernels are being computed (irotkr=1 below) then the option

value is automatically changed later.
#SCANPROG="§{freqpath } /bin/scan—agsm.d"
SCANPROG="${freqpath }/bin/set —obs.d"
setobscase="15"

Name of the file where all stdout from frequency code is redirected.
freqoutfile="/dev/null"

Now we define the important input parameters for ADIPLS

To define the search frequencies in dimensionless units, istsig <=1
istsig="1"

For low order p—modes nsig=1.

For high order p—modes (recommended nsig=2), with sufficiently high

iscan, nsig=1 should be ok too.

For high order g—modes, we must have nsig=3.
nsig="3"

To step in frequency from freql
itrsig="1"

Limits of frequency in terms of square of dimensionless frequency: sigma**2
SFAC="‘echo $SCALE $SOLSCALE $PI $GRAVCON|awk ’{print (2x$3)/sqrt($4)/($1x$2)} "
freql="‘echo $FSTART $SFAC |awk ’{print ($1%$2xle—3)*%2} ‘"
freqh="‘echo $FEND $SFAC |awk ’{print ($1x$2xle—3)*%2} "

echo

echo

echo "SCALE=$SCALE"

echo "SFAC=$SFAC"

echo "freql=$§freql"

echo "freqh=$freqh"

echo "FSTART=$FSTART"

echo "FEND=$FEND"

echo

freqh="1000.0"

Set the number of steps of scanning the frequency interval
iscan="50000"

Set the surface boundary conditions (Look at ADIPLS documentation for details)

43

istsbe="1"
istsbc="0" —> delta p =0
icaswn="10010"
icaswn="10" with istsbc=0
To calculate the rotational kernels and the Ledoux constant, set irotkr=1
For irotkr=1, the beta values are also written out in the freqfile
irotkr="1"
if [["$irotkr" —eq "1"]]; then
setobscase="‘echo $setobscase| awk ’{print $1+4+10}’ ‘"
fi

Files to be removed after completion of the ADIPLS run
Note the "echo ’ ’" to protect the pseudo filenames'!
rmadipls="‘echo ’$prtfile $ssmfile $rotkerfile $tmpmodelfile $freqmodelfile $FREQD

Filename extensions

—— need not be changed usually
modelext="mjcd"

if [["$hmafl" —ne "1" && "$jigfl" —ne "1"]]; then
freqext="freq"

else
freqext="fadi"
fi
gsmext="gsm"
ssmext="ssm"

prtext="prt"
rkrext="rkr"

#%@%'##f%%#%# User—configurable part for ADIPLS ends TR AR

/I/I .y //I/I/I/I/I/I/I///I/ 1/ /////I/I/I/I/I/I/I/I/I/I/I/I/I/I /I .y / I/I/I/I/I/I/I/I/ / /////I/I/I/I/I/I/I/I/I/I/I/I/I/I
I/II// /I/I/I/I/I/I/I/II/I I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/// //I/I/I/I/I/I/I/I// I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/

Do not change the following lines
export PATH="$PATH: ${freqpath}/bin"
config jecd called="1"

Set the variable aprgdir, required by ADIPLS
export aprgdir=${freqpath}
}

function makeadipls ()

{

This function calculates the frequencies of the CESAM-generated model using
JCD’s ADIPLS package

Calls to: config jed, jcdedit

#echo —n "Calculating frequencies"
Configure the pathnames, frequency limits etc. (once only)
if [["$config jcd called" —ne "1"]]; then
config jcd
fi

Name the files
freqmodelfile="${FILESTUB}.${modelext }"
tmpmodelfile="adiplsmodel"
prtfile="${FILESTUB}.${prtext}"
gsmfile="${FILESTUB}.${gsmext }"
ssmfile="${FILESTUB}.${ssmext }"
freqfile="${FILESTUB}.${freqext }"
rotkerfile="${FILESTUB}.${rkrext }"
FREQINPLOC="adipls .n.in"

44

REDISTRLOC="redistrb .in"

Get the no. of mesh points from the oscfile
nmesh—"$NMESH"

Redistribution of mesh
if [["$redistrfl™ —eq "1"]]; then

Temporarily move the model to another file
mv $freqmodelfile $tmpmodelfile

Generate the input file for ADIPLS redistribution program
cp $SREDISTRF $REDISTRLOC

Edit the filenames and the no. of points in the model
jecdedit $REDISTRLOC file .model.old $tmpmodelfile
jededit $REDISTRLOC file.model.new $freqmodelfile
jededit $REDISTRLOC nn $nmesh

Allow interpolation from two sides of convective zone and put a double point

at the boundary

jededit $REDISTRLOC icvzbn 12
jededit $REDISTRLOC icase 11
Redistribute the mesh
$REDISTRIB $REDISTRLOC >> ${freqoutfile}
fi

Calculation of frequencies
Generate the input file for ADIPLS frequency computation
cp $FREQINPF $FREQINPLOC
Edit the filenames
jededit $SFREQINPLOC file .model $freqmodelfile
jededit SFREQINPLOC file .prt $prtfile
jededit $FREQINPLOC file .gsm $gsmfile
jededit $FREQINPLOC file .ssm $ssmfile
if [["$irotkr" —eq "1"]]; then
jecdedit $FREQINPLOC file.rkr $rotkerfile

F

fi
jededit $FREQINPLOC nprmod $nmesh

Set the frequency limits and the scanning interval
jededit SFREQINPLOC istsig S$istsig
jededit $SFREQINPLOC sigl $freql
jededit $FREQINPLOC sig2 $freqh
jededit $FREQINPLOC itrsig $itrsig
jededit $SFREQINPLOC nsig $nsig
jededit $FREQINPLOC iscan $iscan
Set the boundary conditions
jededit $FREQINPLOC istsbc $istsbc
jededit $FREQINPLOC icaswn $icaswn

#Compute the rotational kernels, but do not print them
jededit $FREQINPLOC irotkr $irotkr

Compute the frequencies

$MAKEFREQ $FREQINPLOC >> §{freqoutfile}

it [["$?" —ne "0"]]; then
echo
echo
echo "ADIPLS had runtime problems. Please check. Stopping."
exit 1

fi

Writing out the frequencies from summary file
Output the frequencies from the grand summary file into the frequency file

45

#3SCANPROG ${gsmfile} > ${freqfile}
$SCANPROG $setobscase ${gsmfile} ${freqfile} >> ${freqoutfile}
echo "done!"

Clean up files
eval rm —f $rmadipls
}

function jcdedit {

This function edits the input file required for JCD’s frequency code.
Called from: freq jcd
Calls to: none

modiffile="§1"
string="8§2"
newstring="§3"

headlines=‘grep —i —n —w ~—1 $modiffile | awk "BEGIN { FS = ":" }; {print $1+1}"¢

ntot=‘wc $modiffile | awk ’{print $1}’°

nhead=‘grep —i —n —w $string $modiffile | awk 'BEGIN { FS = ":" }; {print $1}’°

ntail=‘awk —v ntot=$ntot —v nhead=$nhead ’BEGIN {print ntot—mhead -1}’

if [["$nhead" —le "S$headlines"]]; then
nhead=‘awk —v nh=$nhead ’BEGIN {print nh—1}’‘
ntail=‘awk —v nt=$ntail ’BEGIN {print nt+4+1}’"
head —$nhead $1 > tmp$$
unitno=‘grep —i —w $string $modiffile | awk ’{print $1}°°
echo "$unitno ’$newstring’ Q" >> tmp$$
else
head —$nhead $modiffile > tmp$$
echo "$newstring , @" >> tmp$$
fi

tail —$ntail $modiffile >> tmp$$
mv tmp$$ $modiffile

I//II//I 1] S]] 1)] 1] /]

/I/I /II//I /II//I /II//I 1
AL A ctual executable statements start here 7 = =

/I/ /I//II// I//II/ I//II/ 7
/I/I/I/I/I/I/I ,I l I/I/I/I/I/I/I/I/ / . l I I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I .y I/I/I/I/I/I/I/I/I/I/ / l l l/I/I/I/I/I/I/I/I/I/I/I/I/I/I
I/I/I/I/// /I/I/I/I/I/I/I/I l I/I/I/I/I/I/I/I/I/I/I/I/I/I/I/I///I/// /I/I/I/I/I/I/I/I///I I/I/ I/I/I/I/I/I/I/I/I/I/I/

main $Q@
exit O

#!/bin /bash

Tamaghna Hazra, July 2011.

Checks which all ‘HPTTOL’ are hit how many times by counting the flags in ‘fort.52’
for i in ‘seq 1 12¢; do echo —n "HPTTOL($i)"; cat fort.52 | grep "HPTTOL($i)" | wc —1;
#!bin /bash

46

file

don

Tamaghna Hazra, July 2011
Checks which ‘HTOLER’ was hit how many times by counting the flags in ‘fort.52’ file.

for i in ‘seq 1 5° do echo —n "HTOLER(S$i,1)"; cat fort.52 | grep "HTOLER(S$i,1)" | wc —1

)

#!/bin /bash

Plots g—T graph for a specific evolutionary track along with the error box
within which the star is expected to lie. Observing this plot, the user can
tell whether or the the evolution track which is tested is useful or not.

Depends on ‘runyrec’ to generate the ‘gtplot’ file.

Used in: None.

Jayant Thatte, December 2011.

INPUT: Runs on the ‘gtplot’ file in the PWD.
OUTPUT: Outputs a file named gnuplot ‘gtbox’.
ARGS: None.

cat gtplot > gtbox 2>/dev/null
echo "; set origin 0.1,0.55; set size 0.4,0.4; set xrange [3.65:3.66]; set
yrange [2.1:2.5]; set xtics 0.01; set ytics 0.1; replot" >> gtbox

#!/bin /bash

Checks which all runs have been successful by recursively going to each directory in the
Jayant Thatte, December 2011.

Uses: ‘crash check’, ‘makebox’

Used in: None.

ARR—=(prems zams zams_ tams tams brghb brgb rgbl rgbl rgb2 rgb2 rgh3 rgh3 trgb)
cd “/giant /models/d1800/c0000/
for i in ‘ls | grep z[0—9][0—-9][0—-9]¢

do cd 7/giant /models/d1800/c0000/ §i
for j in ‘ls | grep y[0—-9][0-9][0—-9]¢
do cd " /giant/models/d1800/c0000/$i/$j
for k in ‘ls | grep m[0—9][0—9][0—-9]¢
do cd “/giant /models/d1800/c0000/%i/8%j/%k
for m in ${ARR[Q]}
do crash check $m
done
makebox
done
done
done

47

14 Acknowledgements

e I would like to thank Homi Bhabha Centre for Science Education (HBCSE), TIFR, Mumbai for giving me
this stimulating opportunity under the program: National Initiative for Undergraduate Sciences (NIUS).

e My sincere thanks to Dr. Anwesh Mazumdar, TIFR, Mumbai for mentoring the project throughout it’s
duration.

e It was an enjoyable experience to work with Tamaghna Hazra, IIT Kanpur who was my colleague during
this project.

48

