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Abstract

We explore embedding visual depictions of scenes and their linguistic descrip-
tions in a common vector space by joint learning. This is achieved via a layered
neural network system, leveraging a convolutional neural network (CNN) and a
tree “long short term memory” network (T-LSTM) to transform the respective
scene representations into a vector space such that distance between vector rep-
resentation of associated image/description pairs is minimized and that between
contrastive pairs is maximized. We find that T-LSTMs and our model architecture
performs strongly, although it performs significantly inferior as compared to the
current state-of-the-art. This is potentially due to an abbreviated training schedule.

1 Introduction

Given an image, humans can rapidly and flexibly generate a natural language description of what
the image depicts. Perhaps more impressive, humans can readily envision and draw a scene given a
natural language description. This fact implies the existence of an internal representation of a scene
that is independent of the descriptive media. Here, we demonstrate that such nonlinear transforms
over images and over natural language descriptions can be learned by machine learning methods,
and explore the learned common space.

Much work has been done in this area, in both ‘directions’: mapping images to natural language
descriptions either by selection from a pool (‘extractive’) or de novo generation (‘abstractive’) [13}
7,13 15]] as well as using natural language descriptions to search for images or creating a system to
permit both query directions [2} [10].

Our work is most similar to work by Socher et al [[10] although we extend their work in sev-
eral critical ways. First, a vastly expanded dataset is used. Second, following recent advances in
natural language processing (NLP), we leverage the remarkable power of tree-structured LSTMs
(T-LSTMs) [[L1]. Finally we utilize a two column neural network with a joint loss to transform the
image and sentence vectors into a shared vector space (as opposed to using linear transformations
from one space to another).

2 Related Work

Our work is inspired by a number of recent papers on the topic of unifying visual and linguistic data.
Here we briefly describe a few of the most relevant works. Of course everything described here is
built on a great deal of foundational work in vector space models and neural network models which
we have omitted here due to space-constraints.



Grounded Compositional Semantics for Finding and Describing Images with Sentences [10]

In this 2013 paper, Socher et al aim to compute compositional sentence vectors (vectors derived
from recursive composition of word and phrase vectors) and image vectors and then map them into
a common vector space such that semantic relationships are maintained.

The authors develop a model called dependency tree recursive neural networks (DT-RNN)
which computes sentence vectors in a way that they hypothesize captures more of the visual rep-
resentation meaning of an image by weighting word and phrase compositions that are semantically
important according to the sentences dependency tree. Image vectors are computed using a convo-
lutional neural network (CNN) trained on ImageNet.

Once these image and sentence vectors are obtained the authors then train a linear transforma-
tion into a common vector space using a max-margin loss. Matched image and sentence vectors are
encouraged to have a high inner product and mismatched pairs to have a low product.

Overall this model had limited training since at the time of publication only 1000 labeled
image/sentence pairs were available, the authors note that a large dataset would provide a promising
direction for this line of inquiry.

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models [5]

In this 2014 work Kiros et al. explore image-text embedding using complex deep learning models
and take on the task of image captioning. The novel contribution here is that they cast the captioning
problem as translation, applying the encoder-decoder ideas of neural machine translation to it. The
encoder learns a joint image-sentence embedding by first encoding sentences with a long short-term
memory (LSTM) and then projecting image features from a deep convolutional network into the
LSTM hidden state vector space. The networks are trained together using a pairwise ranking loss
which encourages image vectors to be close to their most descriptive caption vectors. The authors
propose that this metric, pairwise ranking, can be used as a proxy for training the encoder for the task
of novel generated captions. The authors used the same dataset that we use in this paper (MSCOCO
+ Flickr30k).

Deep Visual-Semantic Alignments for Generating Image Descriptions [3]]

In this work Karpathy et al 2015 establish the state of the art approach to generating sentence de-
scriptions for images by training a model to learn alignments between sentence snippets and image
regions. Their system uses CNNs and a bi-deictional recurrent neural network (B-RNN) to embed
images and sentences in the same space. The key contribution in this work is introducing a sub-
objective of aligning regions in an image with words from a training sentence while still optimizing
an overall max-margin objective for image-caption pairs.

3 Methods

3.1 Data

We utilize a large number of images/description pairs acquired by combining the recently released
Microsoft Common Objects in Context (MSCOCO)[6] and Flickr30k[14]] datasets. Overall the com-
bined dataset contains 155 thousand images and 775 thousand captions (each image is associated
with 5 captions)—far exceeding the dataset sizes of similar efforts.

Natural language data (i.e., descriptions of images) underwent several preprocessing steps.
First, irregularities in capitalization were standardized by a maximum-vote method (i.e., ‘human’
being more common in the corpus than ‘HUMAN,” caused ‘HUMAN’ to be changed to ‘human’).
Next, the data were arranged into dependency trees via the Stanford Natural Language Parser (using
Universal Dependencies) [1]]. The words themselves were tokenized using a GLoVe [8] lookup table,
in which each word is mapped to a 300-element vector trained on some 640 billion tokens. These
dependency trees form the input to the DT-LSTM as seen in figure[I] Any word or token not found
in the GLoVe lookup table was assigned to the unknown token, which was randomly initialized from
a normal distribution whose parameters were dictated by existing GLoVe vectors.



Images are resized to 224x224 and undergo mean pixel subtraction as described in [9]. These
transformed images form the input to our pretrained CNN as seen in figure
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Figure 1: A schematic of the learning system.

Figure [I] shows an overview of the complete learning system. The system performs a forward
pass on a batch of several pairs of images and captions at once.

Each sentence (arranged in a dependency tree) is transformed into an n-element vector by a
T-LSTM and fed into the ‘twin’ network.

Simultaneously, the image corresponding to the description is transformed into a 4,096-element
vector via either the 16- or the 19-layer pretrained neural network, termed ‘VGG16’ or ‘VGG19,
depending. VGG-16 and VGG-19 are the record-breaking CNNs developed by the Visual Geometry
Group [9]]. These networks are already very well tuned for object detection on the ImageNet dataset;
hence, they will remains static and the twin network will learn a transformation from VGG space
into linguistic space. This was fed into the ‘twin’ network with no additional preprocessing.

The twin network consists of two layers in each column. The bottom layer in each column
transforms the image or description vector into a shared dimension. Then the second layer applies
an affine transform and so-called ‘Leaky’ rectified linear unit (ReLU) nonlinearity before feeding
the two columns into the joint loss.

The role of the twin network was to learn a mapping from image vectors, z, and description
vectors, y, into a shared vector space, which has the important property that the proximity of vectors
is directly proportional to the similarity of the item they represent (either a description or an image).
To ensure that this was the objective of the entire model, a max-margin cost function was used:



(a) A bunch of suitcases lined up along a wall. (b) Two giraffes standing over a sun shielding shelter.

Figure 2: Example image-caption pairs from the dataset.
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which attempts to maximally separate non-corresponding description/image pairs (‘contrastive
pairs’) in vector space while bringing together corresponding description/image pairs (‘true pairs’).

The loss in equation (T) is computed over all contrastive pairs in the dataset however due to
the size of the dataset and it was simply not feasible to compute this cost during each forward pass.
In our implementation we draw on ideas from negative sampling and simply apply the loss function
over each batch. For example given a batch of 10 image caption pairs (no duplicates) we have 10
true pairs and 90 contrastive pairs. This modified loss allows our model to actually train in practice.

3.2.1 DT-LSTM

Our DT-LSTM model is based on the Tai et al’s recent T-LSTM model [12]]. We used it in place of
a simple RNN due to the improved semantic representations it produces.

The DT-LSTM accepts, as input, captions in the form of parse dependency trees, where each
node in the tree has a word vector associated with it. Semantic embedding of captions is given by the
root node output of the DT-LSTM. Max-margin loss is computed inside the twin network using the
embedded sentence and image vectors and the loss is then back propagated through the DT-LSTM.
The DT-LSTM model uses unique sets of parameters for the first p — 1 left children and the first
p — 1 right children (where p is a user-specified parameter) and the left nodes thereafter share a set
of parameters and right nodes thereafter share another set of parameters. That is, in effect, the states
and the outputs of all the left children index beyond and including p are summed up into a single
effective state and output and the same is done for right nodes indexed beyond and including p. The
DT-LSTM is described in greater detail in appendix [A]

See appendix [C] for a link to the code for this model and the rest of the learning system.

4 Experiments

Five experiments were conducted, which are distinguished primarily by differences in the model
hyperparameters. In all but one case, the models ran continuously from the point where the coding
was complete to the submission of this report. See Tables [T|and 2] for details. Because the running
time of the models proved to be quite long, none of the models were able to complete cover a
single epoch. Differences in running time were partially a function of the number of parameters and
partially a function of the speed of the computer used.

Learning was performed by stochastic gradient descent with ‘momentum’ updates, with a
learning rate decay parameter of 0.95 every 2,500 iterations. All models used momentum con-
stant © = 0.5 asymptotically grew to = 0.95. The ‘leakiness’ of the Twin network ReLU units
was 0.01.



Name T-LSTM Hidden | T-LSTM N Children | Twin Net Hidden
Dim Dim

Very Small (VS) 300 2 300

Small (S) 350 3 350

Medium 1 (M1) 450 2 450

Medium 2 (M2) 400 2 512

Large (L) 600 2 600

Table 1: Description of the five experimental models architectures. T-LSTM N Children indicates
the maximum number of right or left children to consider before summing across the remaining

children, as described in the appendix.

Name | Image Batch Size | « N Training | Run Time
Type Examples (Hrs:Mins)

VS VGG16 10 5x 1072 495,000 23:46

S VGG16 50 5x 1071 11,550 102:07

Ml VGG16 10 5x 1071 371,000 113:55

M2 VGG19 10 1x1071 328,000 99:00

L VGG16 20 1x1073 168,000 103:51

Table 2: Experimental model running parameters, where « is the learning rate.

5 Results

The effectiveness of the models was assessed using the standard ‘Recall@K’ metric, which relates
the percentage of times the model assigned each test image the correct caption in the first K instances
and vice versa for captions, in the same manner as [S]] and [4].

Our best performing model was VS, which was also trained on the largest amount of data. See
Table [3| for details. When tested using 1,000 image / caption pairs, the model ranked the correct
caption at number 1 a total of 33 times, and the correct image 24 times (the next best model was ‘L,
with R@1 values of 27 and 23, respectively.

6 Conclusion

The results demonstrate the effectiveness of the model, and specifically T-LSTMs, at mapping natu-
ral language and visual content into a shared space. Keeping in mind that the training was abbrevi-
ated due to time constraints, it is not unreasonable to hypothesize that these models would perform
substantially better given a longer training period (and that they remain training).
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Figure 3: R@K on Very Small Model



[ Model | Image to Caption I Caption to Image ‘

R@I | R@5 | R@10 | R@20 | R@50 || R@1 | R@5 | R@10 | R@20 | R@50
VS 33 | 140 | 242 | 374 | 610 || 24 | 95 | 162 | 285 | 497
S 1 | 52 | 84 | 140 | 282 | 18 | 48 | 73 3.7 | 25.1
M1 21 | 100 | 183 | 309 | 531 || 14 | 68 | 137 | 217 | 435
M2 34 | 106 | 199 | 322 | 568 || 1.8 | 78 | 142 | 248 | 469
L 27 | 120 | 208 | 328 | 581 | 23 | 102 | 179 | 279 | 475
[BRNN[3] || 384 | 699 | 805 | - | - [ 274602 748 | - | - |

Table 3: R@K Values (higher is better) for the various models compared to the current state-of-the-
art (BRNN [3]). All of these were obtained from a test set of 1,000 images / caption pairs.

Because the training was time-restricted, it is difficult to make any remarks with respect to the
effectiveness of the hyperparameter choices, although earlier runs with ultra small networks (both
hidden dims at 200) show that smaller networks tend to saturate before completing a run over the
dataset (i.e., their expressive capacity and hence learning ability is maximized). Nonetheless our
best-performing model was also our smallest (although it also trained on the most data), and in
general the largest predictor of performance was the amount of training completed (unsurprisingly).
Early exploratory work indicated that differences between VGG16 and VGG19 were minimal.

As found in previous studies, the model is better able to map images to captions than the other
way around. This is potentially because the degree of transformation was reduced for images, as
the CNN networks are fixed whereas training error was propagated back through the T-LSTM.

Note: The relevant codes and dataset can be found on our Github repository at
https://github.com/pveerina/imgcap


https://github.com/pveerina/imgcap
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A T-LSTM Model

The T-LSTM model uses unique sets of parameters for the first p — 1 left children and the firstp — 1
right children (where p is a user-specified parameter) and the left nodes thereafter share a set of
parameters and right nodes thereafter share another set of parameters. That is, in effect, the states
and the outputs of all the left children index beyond and including p are summed up into a single
effective state and output and the same is done for right nodes indexed beyond and including p. If a
node has m > p left children and n > p right children, then

m m n
Cp Z Clk hip < Z hak Clp chk hip < Z hig 2
k=p k=p k=p

With these assumptions, the forward propagation equations are listed below.

~ ~
Shared parameters Shared parameters

Figure 4: The figure shows the typical structure of the tree for LSTM network. One particular node
along with its children is shown as an illustration.

J@/&

Figure 5: A Typical T-LSTM node. h and c of a node act as inputs to the parent node (in forward
prop) and i, o, u, 1, r are computed using inputs from children nodes.

h = 0 ® tanh(c) €)]



where h of the root node is the embedding for the corresponding caption and is further fed into the
“twin” network as input.

C=i®u+Zlk®Clk+Z7‘k®6rk 4)
k=1 k=1

where ¢y, is the state of the k™ left child and c,, is the state of the k™ right child.

m n
L=aWDe+ > U i+ VP b +00) 5)
k=1 k=1
m n
rj=ar W2+ 3 U i + 3 VS by +00) (6)
k=1 k=1
u=au (W2 + 3 UM b+ Y Vi b + ) (7)
k=1 k=1
0=ao(Wr+ S U hy + 3V by +0) ®)
k=1 k=1
i=a(WD+ 3 Ui+ 3 VO h +0@) )
k=1 k=1

where a;’s are the activation functions, ¢ is the input from children, w is the update gate, 1 and r are
the forget gates for left and right children respectively, o is the output gate, c is the node state and h
is the node output.

B T-LSTM Backprop

B.1 Error Flows

There are a total of 4+ 2p error outlets from each parent to each of its children. hcpijg — 0, hepita — 7,
hehitd = 6, Rcnita = {l1, .-+, Ip}s Benila = {r1, ..., Tp}s Conita = €.

Total Error at h : let the total error at h be denoted by ej,.

P P
en = 8,U" + 6,00 +6,U + 36,085 + > 6,,08) (10)
Jj=1 Jj=1
where J;’s are the input errors from parent node.
Note: In the above equation, it is assumed that the node under consideration is the k™ left child of
its parent. If the node is a right child, replace all U-parameters in the equation by the corresponding
V -parameters.

Total Error at c : let the total error at ¢ be denoted by e..

oh
. = d.diag(l}, a 1
e iag(ly) + ep e (11

Note: In the above equation, it is assumed that the node under consideration is the kth left child of
its parent. If the node is a right child, replace f; by f;..

Qutput Errors

let the output errors (going from node to its children be denoted by A;’s.

A, = ey, diag(tanh(c)) £ (12)

A; = e, diag(u) 2 (13)



A, = e, diag(i) =
Ay = e diag(cy,) D)
Ay = e, diag(cpp) D)

A, =e.

(14)

15)

(16)

a7

where £/ = diag(a;) and a/; denotes the elementwise derivative of the activation function for a;.

B.2 Parameter Derivatives
# = defined only for non-leaf nodes
Bias Terms » v
oJ aJ*
G0 = 5% gy = 2Bt D A
k=1 k=1
where j € {o0,4,u}

U, V Parameters (#)

oJ oJ
aum — A Gy = A
where j € {o,i,u}
oJ oJ oJ oJ
— = hip Ay — = higArg; — = I WAVFS — = hrkApj
ank 8Ujk avjk 3V}k

W Parameters 87
e = 2

J

where j € {o,i,u,lp,rptandk=1...p

C Implementation

Our comple implementation is available online at: https://github.com/pveerina/imgcap
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