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Abstract—This paper explores the benefit of using Convolu-
tional Neural Networks in generating a disparity space image
for rendering disparity maps from stereo imagery. An eight-
layer fully-connected network is constructed with 3200 neurons
and trained on one million positive and negative image patch
samples. The disparity space image is aggregated using context-
aware cross-based method. The disparity map is generated by a
“winner takes all” strategy.

Great improvements can be visually observed in comparison
to the naive subtractive plane-sweep method especially in regions
with little to no texture. Quantitatively as well, we find CNNs
outperform the naive subtractive plane-sweep on a selected set
of stereo pairs.

I. INTRODUCTION AND RELATED WORK

Depth-based stereoscopic image rendering and 3D recon-
struction has been an important area of research in multimedia,
broadcasting and in computer vision. The area has received a
lot of attention from the broadcast research community for
its applications in 3D Television (3DTV) and Free Viewpoint
Television (FTV)[6], [4], [2], [1]. At the core of all of these
applications is the ability to produce precise and accurate
depth maps for the scene under consideration. This helps in
synthesizing novel views, which is crucial to supporting varied
applications.

Humans have an innate ability to perceive depth from
stereo imagery; however, conventional stereo correspondence
algorithms are generally incapable of producing reliable dense
disparity maps. Most algorithms attempt to do this by first
computing a matching cost and then using various image
processing techniques to estimate depth from the cost . For
instance a common approach is to use squared intensity
differences and absolute intensity differences [3].

In our project, following [5] we have used a Convolutional
Neural Network to predict the matching cost. This is followed
by an image processing pipeline that uses an assortment of
techniques to estimate disparity. The input to our system is a
stereo image pair and the output is a predicted disparity map.

II. ALGORITHM

We chiefly followed Žbontar and LeCun’s pipeline [5]
shown in Figure 1. The algorithm performs the following
four steps: First a cost function is computed which gives
a correlation value between the shifted image pairs at each
disparity. This cost function aides in determining the disparities
of objects. The cost function is intelligently blurred and energy
constraints are place on it. The the disparity map is generated
by using the disparity which minimizes the cost function in
each region. The disparity map is then refined by combining
the information from the disparities gathered from both views.

Fig. 1. Pipeline for generating the disparity map

A. Matching cost computation
Stereo correspondence algorithms generally begin by sweep-

ing one of the images of the pair (right over left in our
approach) and computing a pixel-wise cost at each disparity
value. The resulting stack of costs (Figure 2) is called a
disparity space image (DSI)[3]. At each disparity level in the
DSI, the regions with the minimum cost are most likely to be
at that disparity in the scene.

Fig. 2. A cost function is computed between the the input images at every
disparity value. The disparity value that minimizes a cost in a given region is
used for that region.

Common matching costs include square intensity differences
(SD) and absolute intensity differences (AD) [3] such as:

CAD(p, d) =
∑

q∈9×9 patch

|IL(q)− IR(qd)| (1)

In our approach we have trained a Convolutional Neural
Network to output a cost given a left and a right image.

1) Data-set and Features: While training, the input to the
network is a pair of 9x9 patches, one drawn from each image
of a stereo pair. After training, the network outputs a score
indicated how well the pair of patches is correlated. The KITTI
stereo data-set, for which the ground truth disparity values are
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known, was used to construct positive and negative training
samples. Altogether, one million samples were used to train the
CNN, half of which were positive samples, and the remaining
half were negative

2) Methods: We used the Convolutional Neural Network ar-
chitecture specified in [5]. consisting of 8 layers with Rectified
Linear Units inserted in between each layer.

The final layer of the network produces two outputs. These
are passed through a softmax function to separate them and
this is outputted as a cost. While training, the following cross
entropy loss function is minimized using stochastic gradient
descent with a batch size of 128:

E =
−1
n

n∑
i=1

[pnlog(p̂n) + (1− pn)log(1− p̂n)] (2)

While training the network is configured as a fully connected
network as this is more computationally efficient. However it is
tedious to evaluate an entire image as an array of 9x9 patches.
Therefore, after training, the fully connected network is re-
shaped into a convolutional network.

For instance, Layer L2 is reshaped so that for each node,
the 800 inputs are rearranged in the form of a 5x5x32 filter
which can be used to perform a 3D convolution with the 32
5x5 outputs from Layer L1. A similar modification is applied
to Layer L3, turning it into a convolutional layer with 1x1x200
filters.

Once the network has been made convolutional, it accepts a
pair of complete images as input, and we can use it to prepare
the disparity space image for the subsequent image pipeline.
The output resembles the structure shown in Figure 2.

B. Cost Aggregation
To ensure that the costs outputted for a given region are

smooth within that region cost aggregation is performed. To
ensure regions and not just outlier pixels are minimized we
want to blur the image; however, we would like to make sure
that blurring does not occur across discontinuities (such as
edges) in the scene. For example, it would be a bad outcome
if the disparity values at the edge of a car were averaged with
the wall behind it.

For this reason, we aggregate costs using a context-aware
technique called “cross-based cost aggregation” [6]. The cross-
based technique essentially creates size-restricted regions of
similar color which heuristically correspond to objects as-
sumed to be at the same depth. For each pixel p, in the left
and right images, a support region is constructed by creating
vertical and horizontal arms of a cross that are limited by a
length constraint

||p− pl||2 < η. (3)

and a color difference constraint.

max
c∈{r,g,b}

(|Ic(p)− Ic(pl)|) < τ (4)

Where Žbontar and LeCun only created support regions from
grayscale images, we implemented Zhang’s original method
[6] which compares the intensity of all three color channels.

Fig. 3. Architecture of our CNN [8]

The support region for each pixel consists of the union
of horizontal arms along the vertical arm (Figure 4). The
combined support region is the intersection of the support
regions in each image given disparity d.

Ud(p) = {q|q ∈ UL(p), qd ∈ UR(pd)} (5)

Fig. 4. Cross-based cost aggregation creates support regions around each
pixel which consists of the union of all the horizontal arms of the pixels in
the vertical arm. Arms for a particular pixel are outlined in white.

Disparity space is aggregated four times over this region for
each pixel. This aggregation can be done relatively computa-
tionally efficient using integral images. First, each horizontal
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arm is summed using a horizontal integral image. Then a
vertical integral image is created from the result and used to
sum along the vertical arm of each pixel. Each integral image
cost one addition per pixel and each sum costs one addition
per pixel. This saves a lot of computational power when we
only use 4 additions per pixel rather than n-1 where n is the
number of pixels in the support region.

After cost aggregation, an energy constraint is placed on the
cost function as specified in Žbontar and LeCun’s paper [5].

C. Disparity Computation

In our procedure we calculate the pixel-wise disparity using
a “winner takes all” approach. For each pixel, the disparity
level at which the cost is minimum is recorded as the disparity
for that pixel.

D. Disparity Refinement

Using the previous steps we produce disparity maps refer-
enced to both the left and the right images. Next, we can refine
these maps using the following heuristic suggested by Žbontar
and LeCun [5].

For each pixel in the left disparity map we check to see if a
corresponding pixel in the right image shares that disparity to
within +/- 1. If it does, we classify it as a match. If it doesn’t,
we scan the horizontal axis for a pixel that is a match. If we
find one, that pixel is most likely an occlusion (Figure 5). If
we do not find one it is most likely a mismatch.

Fig. 5. The right and left cameras capture the scene from different angle
(left) so some pixels in the disparity map generated from each view might be
occluded in the other(right). When an occlusion region is detected in the left
disparity map, pixels from the left are used to fill in the hole.

To resolve occlusions we replace the occluded pixel by the
disparity value of the nearest match to the left. To resolve
mismatches, we search in sixteen directions until we find a
matching pixel in each direction and use the median of these
to replace the mismatched value (Figure 6). The refinement
can be seen in Figure 7.

III. RESULTS

A. Qualitative Analysis

Using Convolutional Neural Networks to create a cost
disparity space resulted much cleaner results than the naive
plane-sweep with a 9×9 subtractive method specified in Eq.
(1). Figures 8, 9, and 8 show a comparison of the two methods.
The CNN approach does a much better job at estimating
disparity of smooth surfaces.

Fig. 6. Regions in the disparity map which have no match are filled in by
searching in 16 directions for correct disparities, then assigning the median to
the pixel value

Fig. 7. The top two images are the left and right disparity maps respectively.
When they are compared to one another mismatched regions are filled.

From the results images we can see that our predictions
suffer at the edges, which is to be expected because we do
not have overlapping data there. Additionally, as we slide the
images with respect to each other to generate the cost function,
we lose information from the edges as our disparity increases.
Techniques exist for edge refinement, and given more time we
would have explored these.

Another discrepancy occurs not because of the algorithm,
but because of optical reflections which trick the cost function
to pick disparities which are further away because the image
in the reflection is optically further than the reflective object.
Besides these small problems, the algorithm is shown to
perform quite well.

To test the subjective quality of our disparity maps, we
generated red-cyan anaglyphs to judge the quality of the
resulting 3D image . We tried two methods: generating only
a novel right view from the left image and disparity map, and
generating novel left and right views from the the left image
and disparity map.

The novel right view is generated by applying the appro-
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Fig. 8. (Top) the left image in the stereo pair.(Middle) disparity map created
with the convolutional neural network. (Bottom) disparity map created with
9×9 subtractive method. The CNN performs better especially on smooth
surfaces such as the road. Edges are not so well defined because of lack
of overlapping area between the input images

priate amount of negative disparity to each pixel in the left
image according to the depth map (Figure 11). Similarly, the
left novel view is generated by applying the half the positive
disparity to each pixel in the input left image. The holes
remaining in the novel view from occlusions are filled in with
pixels to the right in the right image and to the left in the left
image (Figure 12).

The anaglyphs give us a very intuitive way to judge the
disparity map quality. We found that they produced fairly
realistic 3D scenes. The novel views, however, contain small
distortions in certain areas due to the minor imperfections in
the disparity map. Though the method which generates only a
right image requires more occlusion holes to be interpolated,
it produces more appealing results. This is probably due to the
minor distortion our disparity map applies to the novel images.
When one image is perfect, our brain tends to interpolated it
to the other eye, but when both images have distortions the
resulting scene does not look as good.

Another way to assess the quality of the results is to compare
them with depth maps produced using a naive subtractive
approach. As can be seen from Figures 8,9 and 10, using the
matching cost produced by the CNN yielded depth maps that
are smoother, and without the jarring holes in the maps that
result from the naive approach. Also, regions with smooth
texture that are traditionally considered difficult to produce
depth values for are modeled surprisingly well.

Fig. 9. (Top) the left image in the stereo pair.(Middle) disparity map created
with the convolutional neural network. (Bottom) disparity map created with
9×9 subtractive method.

B. Quantitative Analysis
We scored the disparity maps generated by both the CNN

and by subtractive plane-sweep against the ground truth data
according to the KITTI data-set specification. To score, we
compute the ratio of of close disparities (within 3) to total valid
disparity pixels in the ground-truth disparity map. The right
and left edges of the disparity maps are discounted because
our algorithm does not handle edges currently for reasons
discussed earlier. Additionally, disparity values in the ground
truth are counted as invalid if they are greater than 80 because
that is the extent of our plane sweep.

For each of 4 test images we compute a score in this fashion
and then average the scores.

The scores are in Table I below.

TABLE I. RESULTS

Subtractive Plane-Sweep Convolutional Neural Network
81 % 87 %

IV. CONCLUSION

In our project we attempted to use a Convolutional Neu-
ral Network to output a matching cost that could then be
aggregated and refined to compute pixel-wise disparities. To
make training computationally efficient it was necessary to use
a fully connected network. To make testing computationally
efficient, it was necessary to transform the fully connected
network into a convolutional network.
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Fig. 10. (Top) the left image in the stereo pair.(Middle) disparity map created
with the convolutional neural network. (Bottom) disparity map created with
9×9 subtractive method. Reflections through off the disparity measure.

Fig. 11. A novel right view (top) is synthesized from the disparity map and a
left image. The original right image is shown for comparison (bottom). Notice
how much of the scene looks very natural such as the roads and buildings,
but smaller features such as signposts are distorted.

Once matching costs were computed, we made use of a
context-aware aggregation scheme called Cross-Based Cost
Aggregation. We then estimated disparities using a “winner
takes all” minimization approach. We also made use of occlu-
sion interpolation to refine the computed pixel-wise disparities.

We found that the CNN based approach leads to disparity
maps that are smoother than those obtained with a naive
approach. Regions with low texture which are traditionally
considered difficult to produce disparity values for are mod-

Fig. 12. 3D anaglyphs generated from the original left image and synthesized
right view(top), synthesized left and right views (middle), and original stereo
imagery (bottom)

elled rather well by this approach. Anaglyphs were generated
from the depth maps to subjectively evaluate the results.

The next step step for us is to implement edge refinement
and rigorously compare our performance against ground truth
for our data-set. Owing to computing constraints we have not
yet been able to run exhaustive evaluations, but we are in
the process of obtaining these resources, and plan to produce
quantitative evaluations against the data-set results in the
coming days.
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[5] Jure Žbontar and Yann LeCun. Computing the stereo matching cost with
a convolutional neural network. arXiv preprint arXiv:1409.4326, 2014.

[6] Ke Zhang, Jiangbo Lu, and Gauthier Lafruit. Cross-based local stereo
matching using orthogonal integral images. Circuits and Systems for
Video Technology, IEEE Transactions on, 19(7):1073–1079, 2009.


