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Abstract

Convolutional Neural Networks (CNNs) are often used
to extract a lower-dimensional feature descriptor from im-
ages. Though they have recently been deployed successfully
to solve tasks in computer vision such as semantic segmen-
tation, image reconstruction or depth understanding, the in-
ner workings of CNNs are still subject to current research.

Recent research to better understand features learned by
CNNs has focused on networks trained to do image classifi-
cation. We perform a similar investigation, but in the realm
of 3D pose estimation. We explore inversion techniques sim-
ilar to those in [12, 13, 3] to invert the feature descriptor
learned by PoseNet, a CNN by the Stanford Computer Vi-
sion and Geometry laboratory trained to understand the 3D
pose of objects. We use a dataset consisting of several mil-
lion images annotated with camera parameters.

Our results suggest that PoseNet mainly embeds infor-
mation about edges that point towards the main vanishing
point in the feature descriptor. Most strikingly, color and
texture information are lost, while the feature descriptor re-
tains enough information to reconstruct the rough shape of
the object in the original image.

1. Introduction
The aim of this work is to find the features in a 2D im-

age that are relevant to understand the 3D pose of a pre-
sented object. We make use of PoseNet (explained in sec-
tion 2.1) developed at Stanford’s Computer Vision and Ge-
ometry Lab. PoseNet was trained using street view images
annotated with the corresponding camera parameters. The
network embeds these images in a low-dimensional vector
representation - this representation is then used to compute
the pose of the presented object in the image.

In this project, we invert the vector representation pro-
duced by PoseNet to investigate what features of the orig-
inal image are retained by the network in the vector em-
bedding. Studying which features are retained and which

are discarded will help in understanding what aspects of an
image are really required to solve the task of 3D pose esti-
mation. For example, we expect image colors and textures
to have little or no information about the pose, whereas cer-
tain object boundaries as well as perspective and keystone
effects should play a critical role.

We used two main techniques for inverting the network.
They are outlined in detail in section 3. The first type in-
verts the network by solving an optimization problem while
imposing a natural image prior and does not involve learn-
ing any parameters. It takes as input an original image
and extracts its vector representation by passing it through
PoseNet, then uses this feature descriptor to output a recon-
structed image with the same vector representation. The
second approach tries to learn a decoder to minimize the
loss in image space between the original image and the re-
constructed image. The algorithm takes the feature descrip-
tor of the original image as input, passes it through an up-
convolutional network and outputs the reconstructed image.
We expect the reconstructed images to preserve only those
qualities of the original image that give useful insights into
3D orientation, while other details should be discarded.

2. Background/Related Work
Convolutional Neural Networks have been proven to be

useful for semantic understanding of images [11]. Recently,
there has been a lot of effort in inverting the vector em-
beddings generated by CNNs to understand what the net-
works learn in order to solve classification tasks. [12] re-
constructs the original image by analytically reversing the
network, while [13] generates a typical image for each im-
age class. Such work can give significant insights into why
CNNs work so well on classification tasks [16]. [14] formu-
late the problem as an optimization problem and produce
input saliency maps given a specific output label.

Another class of approaches is to learn an optimal de-
coder that recovers an input image from the vector embed-
ding. The idea being that the reconstructed image can only
be as good as the vector embedding and therefore seeing the
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reconstructed image can give useful insights into what in-
put features were discarded by the network, when trained to
solve a semantic task [3]. Such learned decoders are shown
to be effective at inverting shallow representations such as
HoG and SIFT, as well as deeper and highly non-linear rep-
resentations produced by CNNs [2]. [7] argue that L2 re-
construction loss is not optimal to perform the task of net-
work inversion and introduce the concept of Generative Ad-
versarial Networks (GANs). Decoders trained using GANs
have recently been shown to produce much sharper recon-
structed images [4]. They also argue that GANs can be un-
stable and very susceptible to the choice of hyperparameters
and give some pointers to make such networks trainable.

While almost all of the existing work in inverting CNNs
has been in the area of image classification, CNNs have re-
cently shown promising results in the areas of image mor-
phing, 3D reconstruction and novel view synthesis [6].[5]
trains a CNN to learn vector embedding corresponding
to 3D representation of computer generated models and
demonstrates that these vectors can then be used to syn-
thesize novel views of 3D objects. Understanding what a
deep neural network learns when trained to solve 3D tasks
is therefore critical. Such understanding will help us better
deploy such networks for solving problems in 3D computer
vision.

2.1. PoseNet

PoseNet is part of a multi-task CNN developed at Stan-
ford’s Computer Vision and Geometry Lab [15]. It takes
as input a 100x100 RGB image and produces a 512-
dimensional feature descriptor that is then used in combi-
nation with the descriptor of a second image to solve three
different tasks: wide baseline matching, estimating the rel-
ative camera pose between the two images and the shape
(normal vectors) of the depicted object. Since these tasks
can be solved using only the PoseNet feature descriptors of
the two images, the PoseNet feature descriptor must embed
features that encode information about the geometry of the
scene.

3. Methods
In the following sections we outline two approaches for

network inversion. The first formulates the inversion as an
optimization problem that can be solved iteratively via a
gradient descent method. The second involves training a
neural network that learns to generate reconstructed images.

3.1. Inverting the feature descriptor

To investigate what information is retained after pass-
ing an image through the network we follow an approach
similar to [12] to invert the feature descriptor (see Figure
1). Minimizing the euclidean distance between the feature
descriptors of the original and reconstructed image can be

Figure 1: To invert the feature descriptor we solve an op-
timization problem to find a reconstructed image that has
the same (i.e. as close as possible in the euclidean norm)
feature descriptor as the original image.

thought of as finding an image that is indistinguishable from
the original in the eyes of the network. However, because
the feature descriptor is of lower dimension than the input
image, many such solutions might exist. To find the visually
most interpretable image, we additionally impose regular-
ization and a natural image prior on the objective function.
One popular natural image prior is total variation (TV). It
encourages sparse gradients in the image and is defined as
follows:

TV (x) =
∑
i,j

√
(xi,j+1 − xi,j)2 + (xi+1,j − xi,j)2 (1)

For the regularization we follow [12] and choose the L6-
norm. Combining the above yields the following loss func-
tion:

Loss(x) = ‖φ(x0)−φ(x)‖2+λTV TV(x)+λL6‖x‖6 (2)

Additionally, guided by [14], we implement ”small-
contribution clipping”. Small-contribution clipping sets
pixels to zero that contribute little to the loss function,
thereby reducing unwanted background noise in the image
and increasing the contrast between important features and
the background. The matrix of approximated contributions
C of single pixels to the loss function can be approximated
by multiplying the gradient ∇xLoss(x) of the loss func-
tion with respect to the pixel values with the pixel values x
themselves, summing over all three channels R,G,B and
then taking the absolute:

C = |
∑

R,G,B

∇xLoss(x) ◦ x|

C is a linear approximation of how much every single pixel
impacts the loss. Pixels that are within a certain percentile
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Figure 2: Upconvolution essentially works like the back-
ward pass of a normal convolution layer. The values of the
input volumes are multiplied with the upconvolution kernel
and added to the output volume.

Figure 3: Basic architecture of our upconvolutional network
used to invert PoseNet

of this distribution can now easily be clipped to zero.
We can find the reconstructed image by using a gradient de-
scent method to minimize the above loss and clipping pixels
with low contribution to zero in every iteration.

3.2. Upconvolutional Neural Networks

Our second approach to go from feature descriptor to
a reconstructed image is via an upconvolutional network.
Such upconvolutional networks can act as effective de-
coders for the forward network [2, 3]. In the first layer of
the network the feature descriptor representing the embed-
ding of the input through PoseNet is reshaped into a 3D
volume. This 3D volume is repeatedly passed through up-
convolutional layers, nonlinearities (ReLu) and batch nor-
malization layers until we reach the original image space
(of dimension 3x100x100). Figure 2 explains the workings
of an upconvolutional layer.

The basic architecture of the upconvolutional network
used is given in Figure 3. The architecture of the upconvo-
lutional network is modeled after the PoseNet architecture,
but in reverse order. In addition we add a batch normal-

ization layer after each nonlinearity. Batch normalization
ensures that the input distribution to subsequent layers is
fixed by normalizing the mean and variance of its inputs
[8]. This lets us use higher learning rate and the network is
less sensitive to weight initialization. It also acts as a regu-
larizer and eliminates the need for additional regularization
like Dropout. The loss function that we use for learning
the weights in the decoder network is the L2 (mean squared
error) loss between the generated and the original image.

4. Dataset
Our dataset consists of 800,000 street view images de-

picting roadside buildings from different view points and
angles provided to us by [15]. The original images are
640x640 RGB images. We resized the images to 100x100,
transposed the channels to BGR and subtracted the dataset
mean of every channel. We then passed all images through
PoseNet and extracted 800,000 feature descriptors from the
CNN to complete the dataset. For the sake of training the
generative CNN we split the data into 650,000 training,
100,000 validation and 50,000 test examples. Because of
the considerable size of the dataset we did not use any kind
of data augmentation.

5. Experiments/Results/Discussion
5.1. Frameworks and infrastructure

All experiments were conducted on Stanford’s Sher-
lock computing cluster on single NVIDIA Titan or GTX
GPUs. The upconvolutional network was implemented us-
ing Torch [1], while we used Caffe [9] for the computations
needed for the inversion of the feature descriptors extracted
from PoseNet. For the experiments involving Convolutional
Neural Networks, batch sizes of 64 images were used for
training - in a benchmark comparing batch sizes of multi-
ples of 64 up to 960, this, unexpectedly, proved to be the
most efficient batch size. We used Adam [10], a first-order
gradient-based method, to optimize all the objective func-
tions proposed in section 3. All of the training was done
on ”cities” dataset, developed in Stanford Computer Vision
and Geometry Lab.

5.2. Inverting the feature descriptor

Our metric for a successful inversion of the feature de-
scriptor is the relative loss between the feature descriptor of
our generated image and the descriptor of the original.

RelativeLoss(x) =
‖Φ(x)− Φ(x0)‖2
‖Φ(x)‖2 + ‖Φ(x0)‖2

(3)

As a qualitative measure we looked at the visual inter-
pretability of the generated images. To find a set of pa-
rameters that would yield the most interpretable images we
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Figure 4: Ten random samples from the street view dataset.

Hyperparameter Value

ADAM parameters
LearningRate 26.60

β1 0.90

β2 0.99

ε 1 ∗ 10−8

Regularization parameters
λL6 1.95 ∗ 10−15

λTV 4.00 ∗ 10−6

ClippingPercentile 21.40

Table 1: Best set of hyperparameters for inverting the fea-
ture descriptor

conducted an extensive hyperparameter search. In an initial
search we set the regularization strengths (λTV and λL6)
to zero and took 1500 random samples for the learning rate
from a log-space between 1e-10 and 1e4. For β1, β2 and
ε we chose the default values suggested in [10]. The best
parameter set we found yields a relative loss of 0.08.

We found the relative loss to be insensitive to the amount
of high-frequency patterns and noise in the reconstructed
image, which both strongly impact interpretability. Choos-
ing the right regularization is therefore vital to find a read-
ily interpretable image. Continuing the search for suit-
able hyperparameters, we looked at 2500 randomly sampled
combinations of learning and regularization parameters and
chose the best set of parameters by doing a visual compari-
son between the reconstructed images.

Figure 5 shows inversions from both the conv4 layer and

the fc5 layer of six city images from the test set. It is in-
teresting to see that the feature descriptor does not encode
either color or texture information of the original image, as
the reconstructed images lack these features.

The most striking feature retained in the reconstructed
images are the dominant edges pointing toward the van-
ishing point in the original image. This often coincides
with the edge between the buildings and the sky: When-
ever the image exhibits such an edge, this edge is the most
significant feature in the reconstructed image. The neural
network also exhibits a strong preference for edges in the
image that align with this major feature: this is most ev-
ident when looking at windows, where vertical edges are
seldomly found in the reconstructed images, while horizon-
tal edges are often still present. Looking back at one of the
tasks PoseNet was originally trained to do, it seems to make
intuitive sense that these dominating edges are an important
feature to do camera pose estimation.

5.3. Upconvolutional Neural Networks

Our metric for the successful reconstruction of images
from their feature descriptor is the training and validation
loss of the upconvolutional neural network, on the quanti-
tative side, and a visual analysis of the reconstructed im-
ages, on the qualitative side. Similar to subsection 5.2 we
first conducted a coarse hyperparameter search sampling the
learning rate randomly from a log-space. For the coarse
search we only trained the network for 500 batches and
evaluated the parameters on the training loss to find a range
of parameters that allowed the network to converge. After
narrowing down the search space we did a second hyperpa-
rameter search, this time choosing the best set of parameters
based on the loss calculated from 1000 batches randomly
sampled from the validation set. The best set of hyperpa-
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Figure 5: The original and reconstructed images side by side. fc5 are the images reconstructed from the feature descriptor
extracted at the end of PoseNet, while conv4 are the images reconstructed from the feature descriptor extracted after the
fourth convolutional layer. It is interesting to see that color information of the original images is lost, while the dominant
edges pointing towards the vanishing point in the original image are retained.

Hyperparameter Value

ADAM parameters
LearningRate 26.60

β1 0.90

β2 0.99

ε 1 ∗ 10−8

Table 2: Hyperparameters for the upconvolutional neural
network

rameters is listed in 2. We found that, as specified in [10],
β1 and β2 had very little impact on the optimization process.

To test the capacity of our network and ensure a correct
implementation we overfit the network heavily by repeat-
edly showing it the same images from a small excerpt of the
training dataset. The results can be seen in Figure 6.

Thereafter we used the best set of hyperparameters
to train the upconvolutional neural network for 140,000
mini-batches, or an equivalent of 14 epochs or 8.96 million
images. Figure 8 depicts the validation and training losses
over time. Both losses drop significantly in the first 1000

Figure 6: Two reconstructions from overfitting the upcon-
volutional Neural Network on a small dataset

batches and subsequently stagnate. The two drops in the
loss curve happen after manually dividing the learning rate
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Figure 7: Inversions of city images achieved with the fully
trained upconvolutional neural network

by 10. The small difference between training and validation
loss is indicative of little overfitting.
The stagnation of the two losses in the observed learning
curve has three likely explanations: The upconvolutional
network used is not powerful enough, the optimization
process is not working properly (wrong hyperparameters
or weight initialization) or the network has exploited all
information retained in the feature descriptor that is useful
for image reconstruction.

To check for the first possibility we trained a deeper net-
work (with additional convolutional layers of depth 256).
We then did an independent hyperparameter search for this
neural network and trained it on 2000 batches (past the 1000
batches where the less powerful network had already more
or less converged) of imagery with the best hyperparame-
ter set we found. We found that this second, more powerful
network did not do significantly better and that adding more
layers does decrease neither training nor validation loss.

We conclude that the network was indeed powerful
enough. Seeing that we did an initial, extensive hyperpa-
rameter search and used learning rate decay, we thus find
that the network exploited all information contained in the
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Figure 8: Plot of training and validation losses for the up-
convolutional Neural Network

feature descriptors of the images.
Figure 7 depicts a choice of a few images generated by the
fully trained upconvolutional neural network.

Building on the hypothesis that this network fully ex-
ploits the information contained in the feature descriptors
these images allows for a reasonable interpretation: to de-
tect the pose of buildings in a city, the essential informa-
tion necessary is the silhouette of this building against the
sky. This agrees with the results of the feature descriptor
inversion that demonstrated the network’s preference for
the dominant edge found in the image. However, we find
that the inversions produced by the upconvolutional neural
network do not show any other significant structure: edges
other than the shilhouette of the building against the sky are
not visible, although they are clearly significant to the fea-
ture descriptor as demonstrated by figure 5. This is likely
due to the L2 loss used as an objective function: The in-
versions produced by the optimization method suggest that
the feature descriptor does not embed precise localization of
every edge in the image - L2 regularization in image space
will average over all possible locations and will thus likely
lead to blurry images. This hypotheses motivated another
experiment: The implementation of a Generative Adversar-
ial Model.

5.4. Additional Experiments

5.4.1 Generative Adversarial Network

To reconcile the shortcomings of the L2-loss, [4] suggest to
complement it with a new class of loss functions. Similar to
generative adversarial networks, proposed in [7], the idea is
to train a discriminator network to differentiate ”real” im-
ages from those generated by the upconvolutional neural
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Figure 9: Sample of inversions of images of indoor scenes.
These images suggest that the CNN is also able to pick up
dominant edges in scenes it has not been trained on.

network. The generative network will then, in addition to
minimizing the L2-loss between the reconstructed and orig-
inal image, try to fool this discriminator network. If trained
correctly, the loss function defined by the discriminator can
be interpreted as a prior favoring realistic images and will
lead to much sharper and more realistic images.

We briefly trained a generative adversarial model af-
ter hypothesizing that the upconvolutional neural network
trained with the L2 objective did in fact exploit all informa-
tion embedded in the feature descriptor, but did not produce
sharp images due to the limitations of the L2 loss. However,
we did not succeed in balancing the training of the gener-
ative network and the discriminative network - training did
not converge, and due to the time constraints of this project
we were not able to tune the pipeline to function properly.

5.4.2 Other image datasets

Even though the network was trained on the ”cities” dataset,
we wanted to see if the network is still capable of learning
edges contributing to vanishing points in completely differ-
ent scenes, with different image statistic. We thus ran the
same experiments on two other datasets - ”cars” and ”in-
door”. Sample images from the datasets, along with the
reconstructed images, are shown in figures 10 and 9.

These experiments show that the network is able to pick

Figure 10: Sample of inversions of images of cars. These
images suggest that the CNN is also able to pick up domi-
nant edges in scenes it has not been trained on.

up dominant edges in the images that contribute to vanish-
ing points. Further, the forward network only retains dom-
inant edges that give perspective information, while other
edges are ignored, even if they are dominant in terms of
RGB contrast.

6. Conclusions/Future Work
In this project, we have investigated which information

is retained in the feature descriptor learned by PoseNet
with both optimization and learned upconvolution methods.
We found that the most significant feature embedded by
PoseNet in the feature descriptor are edges that give strong
cues about object pose. As opposed to AlexNet, PoseNet
does not retain significant color or texture information in
its feature descriptor. Both optimization and learned upcon-
volution delivered relevant insights, however, optimization-
based approaches lead to more detailed inversions. Future
work can be directed at comparing the generated inversions
with inversions of the same images obtained from AlexNet,
allowing insight into what features are unique to PoseNet
and thus likely to give strong cues about object pose.
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