Rendering of Stereoscopic 360° Views From Spherical Image Pairs

Dash Bodington, Jayant Thatte, Matthew Hu Department of Electrical Engineering, Stanford University

Goal and Motivation

The goal of this project is to capture vertically displaced spherical image pairs with the Ricoh Theta camera, and generate stereoscopic 360° views for the Samsung Gear VR.

Ricoh Theta Capture vertical stereo scene information.

Processing Extract scene information and render new views.

Samsung Gear VR Display stereoscopic 360° information.

The system implemented in this project facilitates easy capture and review of 360° 3D video, since the entire scene is captured at once and there is minimal scene occlusion by the setup.

References

1.Bae, Kyung-Hoon; Yi, Dong-Sik; Kim, Seung Cheol; Kim, Eun-Soo, "A bi-directional stereo matching algorithm based on adaptive matching window", Applications of Digital Image Processing XXVIII, Proceedings of the SPIE, Volume 5909, pp. 676-683 (2005)

2.Kim H., Hilton A., "3D scene reconstruction from multiple spherical stereo pairs," Int. J. Comput. Vision. 104, (1), 94 –116 (2013).

3.Kim, HanSung; Sohn, Kwanghoon, "Hierarchical depth estimation for image synthesis in mixed reality", Proceedings of the SPIE, Volume 5006, p. 544-553 (2003)

4.Schmidt, J.; Niemann, H.; Vogt, S., "Dense disparity maps in real-time with an application to augmented reality," Applications of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop on , vol., no., pp.225,230, 2002

5.Zhang, L.; Wa James Tam, "Stereoscopic image generation based on depth images for 3D TV," Broadcasting, IEEE Transactions on , vol.51, no.2, pp.191,199, June 2005

Methodology

Initial Top and Bottom Images

 Captured 360 by 180 degree panoramas using a Ricoh Theta camera at two known tripod heights

Segmentation-Based Disparity Filtering

 Disparity values were averaged over each segment generated in the previous step.

Disparity Map Generation

- Used a windowed similarity accumulator to calculate raw disparities
- Median and closing filters for small holes
- •Filled in large, undefined regions.

 Converted disparity values to their trigonometrically corresponding depth values.

Color Segmentation

•RGB image was segmented using chromaticity, to identify objects in the scene.

Stereoscopic Image Rendering

- Calculated new position for each pixel from shifted viewpoints.
- •Filled image holes with depthsensitive replication.

Experimental Results

Original bottom image Image corresponding to disparity map for future distortion.

Segmented Disparity map Disparities averaged over calculated color segments.

Pixel-level disparity map Brighter pixels correspond to greater

Depth Map Brighter pixels correspond to greater distance.

Color segmentation Detected segments uniformly

colored.

Anaglyph Image Both rendered views represented in different color channels.

