

### LiFF: Hand-Crafted Light Field Features

Donald G. Dansereau SCI Group Meeting 09 Feb 2018

ComputationalImaging.org



### Outline

Motivation: Why LF Features? LF Structure Review Previous Approaches Hand-crafted LF Feature Preliminary Results Dataset



### Feature Detection & Matching

#### ...the basis for much of computer vision

#### [COLMAP tutorial]



"It works pretty well most of the time"

 $\rightarrow$  Survivor bias

We don't use it where it doesn't work Frequent failures in challenging conditions Computation vs robustness tradeoff Infrequent failures can kill

Image registrationPlace recognitionPose estimationChange detection3D reconstruction...Detect  $\rightarrow$  describe  $\rightarrow$  match  $\rightarrow$  outlier reject & register



ComputationalImaging.org



#### Where it Breaks

Low light / low contrast

Occlusions

Speculars

Reflection

Transparency

Driving, Drones Delivery, surveillance, monitoring Augmented reality *Medical, underwater, space, ...* 





#### LF Features

Low light / low contrast

Occlusions

Speculars

Reflection

Transparency

Light fields are good at these

Detect  $\rightarrow$  describe  $\rightarrow$  match  $\rightarrow$  outlier reject & register

#### LF Features

More selective detections More robust and informative (3D) descriptors More selective matches

 $\rightarrow$  Fewer missed and incorrect registrations

New application areas Saved dollars and lives



### **Review: LF Structure**



Stanford camera array



ComputationalImaging.org





Stanford camera array



ComputationalImaging.org





Stanford camera array



ComputationalImaging.org





Lytro Lenslet-based camera







Lytro Lenslet-based camera







Lytro Lenslet-based camera

### LF Structure







#### Lytro Lenslet-based camera

#### LF Structure





### Epipolar Images



### Previous Work: Hand-Crafted LF Features

[Teixeira 2017 "3D keypoint detection by light field scale-depth space analysis"]

- $\rightarrow$  2D SIFT in all sub-views, Hough to find lines in EPI images
- $\rightarrow$  >200x slowdown; 2D decisions ignore 4D structure
- [Xu 2015 "Transcut: transparent object segmentation from a light-field image"]
- $\rightarrow$  Optical flow between sub-views then a (partial) planarity check to find refractions







ComputationalImaging.org

#### Stanford Computational Imaging Lab

[Teixeira2017]





### **Opportunity and Approach**

Previous work doesn't exploit LF structure for speed or robustness An ideal feature

Is fast

Is robust

Just works (with minimal tuning)

Learning LF Features (ongoing @Stanford)
 Fast refractive feature rejection (ongoing w/QUT)
 A hand-crafted generalization of SIFT



### Contributions

1) LF feature detector and descriptor

Faster than current approaches (typically 20x faster) More robust in low light, occlusions, non-Lambertian, ...

2) Quality filter and disparity estimate
 Additional robustness to refractions, reflections, occlusions, ...
 Augmenting descriptor with disparity (depth)

[3) Adaptive operation]

Exploit favourable conditions *Estimate*: additional 3x speed boost

4) Multiview LF Dataset (name?)



#### **Review: SIFT**





#### ... then find local extrema.

ComputationalImaging.org

### State-of-the-Art: Repeating 2D SIFT



... then combine (ad-hoc)

No benefit in low light Descriptor sensitive to occlusions Sensitive to non-Lambertian surf. Slow! (Ns x Nt x slower)

[Teixeira 2017]

ComputationalImaging.org

# Full 4D: Jointly Detecting Scale, Slope

| 1                                     | • | • | • | • | • | • | • | • | • | • | • | ٠ |   |  |
|---------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
|                                       | • | • | 0 | • | 0 | • | • |   | ۰ |   |   | • |   |  |
|                                       | • | ٠ | 0 | • | ۰ | • | • | ٠ | 0 | • | 0 | • | ۰ |  |
|                                       | • | ۰ | • | • | ۰ | ۰ |   |   |   |   |   |   |   |  |
|                                       | • | ۰ | 0 | • | • | • |   |   |   |   |   |   |   |  |
|                                       | • | ۰ | • | • | • | ۰ |   |   |   |   |   |   |   |  |
| lopes                                 | • | ۰ | • | 0 | • | • |   |   |   |   |   |   |   |  |
|                                       | • | ۰ | • | • | • | ۰ |   |   |   |   |   |   |   |  |
|                                       | • | • | 0 | • | 0 | • |   |   |   |   |   |   |   |  |
|                                       | 0 | • | • | • | • | • | • | ۲ | • |   |   |   |   |  |
|                                       | 0 | • | • | 0 | • | • | • |   | • |   |   |   |   |  |
| · · · · · · · · · · · · · · · · · · · | 0 | • | 0 | 0 | • | • | 0 | 0 | • |   |   |   |   |  |

 $N_{scales}$ 



...

See through occlusions See in low light Detect non-Lambertian Est. depth (slope) VERY slow

ComputationalImaging.org



### Separability $\rightarrow$ Speed





#### Identical to Full 4D Much faster



### Mixed-Domain Filtering





Faster in some scenariosDepth *volumes*→ Fewer slices

# Demo of Joint Slope / Scale Estimation





# Complexity

| Method        | Est. Relative Speed<br>(bigger is better)<br>Illum, 16 scales, 8 slopes | Est. Relative Speed<br>(bigger is better)<br>Gantry, 16 scales, 8 slopes |
|---------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Naive SIFT 4D | 1                                                                       | 1                                                                        |
| 4D Full       | 1/21                                                                    | 1/21                                                                     |
| 2D FFT        | 9.8                                                                     | 11                                                                       |
| 2D Spatial    | 22                                                                      | 27                                                                       |
| Adaptive      | Up to 60                                                                | Up to 100                                                                |



# Local 4D Structure from Autocorrelation



weighted normalized cross-correlation (could also use other template matching methods)

Abstracts away from texture

Captures non-lambertian effects

ComputationalImaging.org

### Epipolar Voting: $4D \rightarrow 2D$





### Reflections, Refractions

#### Scene with occlusion or reflection

#### Cylindrical Refraction





2 Lytro Illum images treated in 2D with stereo registration







**Rectified Stereo Images** 







all putative matches



post-RANSAC matches



ComputationalImaging.org

**Rectified Stereo Images** 



ComputationalImaging.org

#### Proof-of-Concept: Slope

Depth (slope) from 2D Hough



Stanford Computational Imaging Lab

500



#### Proof-of-Concept: Refractions

Yellow = poor feature



ComputationalImaging.org



#### Proof-of-Concept: Occlusions

Yellow = poor feature





ComputationalImaging.org



#### **Proof-of-Concept:** Faster Refractions [w/Dorian Tsai, QUT, Brisbane]



Xu 2015 Transcut



#### **Proof-of-Concept:** Faster Refractions [w/Dorian Tsai, QUT, Brisbane]



Proposed  $\rightarrow$  IROS



### Evaluation

Quantitative comparison to 2D SIFT and Teixeira2017 Ground truth obtained via hand-curated SfM & Multi-View LF Dataset Repeatability, putative match ratio, precision, matching score, recall Computational complexity (FLOPS, O(.)), [speed of MATLAB implementation]



Qualitative demonstrations SfM failing for 2D / naive features ... and succeeding with LiFF features

[Teixeira2017, schonberger2017, heinly2012]

ComputationalImaging.org



#### Dataset

4251 LFs in 31 categories
Illum camera, varying zoom, focus, exposure
Indoor, outdoor, easy, challenging
3-6 views of each scene, fixed focus/zoom
Some revisited sites: illumination variation
Uncalibrated camera, rough intrinsics / rectification

| bamboo    | coins         | pens_and_pencils |
|-----------|---------------|------------------|
| batteries | cups          | people           |
| benches   | drawers       | phones           |
| bikes     | fire_hydrants | screws           |
| books     | flowers       | shelf            |
| bottles   | glasses       | signs            |
| boxes     | glue          | succulents       |
| buildings | keyboards     | tables           |
| cables    | leaves        | tools            |
| cacti     | misc          | trees            |
| chairs    |               |                  |



ComputationalImaging.org



#### Milestones

Slope est / feature rejecter [0.5 week]
Low-complexity 4D SIFT [1]
Practically fast implementation [0.5]
Adaptive version [1]
Evaluation [2]
Paper [1]

Colmap ground truth [2 weeks] Challenging example collection [1]



### LF Capture



EPIImaging Module





### e.g. Reflection

#### Reflections cause spurious matches [Wanner2013]

#### Fix: Multi-orientation analysis



Center view and stereo reconstruction



Proposed double orientation analysis

Epipolar plane image and two recovered orientations at the center location

ComputationalImaging.org



### e.g. Occlusions

#### Occlusions break matching [Wanner2013]

#### Fix: Multi-orientation analysis





### e.g. Refraction



ComputationalImaging.org



### e.g. Reflection & Low Light







#### Refinements

#### Refinement1: square the voting space to increase peak contrast Refinement2 (shown before/after here): highpass filter before cross-correlation to thin peak





### **Detail: Low-level Metrics**

**Detector Repeatability** 

Fraction of features correctly re-detected under camera pose change Putative Match Ratio = #Putative Matches / #Detected Features Fraction of detected features initially identified as a match, i.e. selectivity of matching Precision = #Inlier Matches / #Putative Matches How many putative matches are good Matching Score = #Inlier Matches / #Detected Features Number of deteced features that will result in good matches Recall = #Inlier Matches / #True Matches How many true matches were found

#### [Mikolajczyk2005, Schonberger2017, Heinly2012]



### Previous Work

[Tosic 2014 "3D keypoint detection by light field scale-depth space analysis"]

→ Detects edge keypoints, no descriptor, assumes Lambertian

[ Ghasemi 2014 "Scale-invariant representation of light field images for object recognition and tracking" ]

→ Global (full frame) descriptor

[Zhang 2017 "Ray Space Features for Plenoptic Structure-From-Motion"]

 $\rightarrow$  Line segment detector in all subviews





ComputationalImaging.org

### Are Hand-Crafted Features Relevant?

[Schonberger 2017 "Comparative Evaluation of Hand-Crafted and Learned Local Features"]

- → Hand-crafted modern SIFT are **faster** and **better** at reconstruction than learned features
- $\rightarrow$  Framework for evaluating features for reconstruction tasks
- → Only compares descriptors, not detectors; still a good framework for comparing



Figure 11. Sparse and dense reconstruction of Fountain for DSP-SIFT.

# Is Speed Important / a Contribution?

[SIFT: Lowe 2004] "near real-time performance", "0.3 seconds on a 2GHz Pentium 4" IJCV: >45,000 citations

[FAST: Rosten 2006] "Machine learning for high-speed corner detection" ECCV: >3,000 citations

[SURF: Bay 2008] "Speeded-Up Robust Features" ECCV & CVIU: >11,000 citations

[BRISK: Leutenegger 2011] "an order of magnitude faster than SURF" ICCV: > 2,000 citations

ComputationalImaging.org