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Feature Detection & Matching
...the basis for much of computer vision

Image registration

Pose estimation

3D reconstruction

“It works pretty well most of the time”
 → Survivor bias

We don’t use it where it doesn’t work
Frequent failures in challenging conditions
Computation vs robustness tradeoff
Infrequent failures can kill

Place recognition

Change detection

…

[COLMAP tutorial]

Detect  describe  match  outlier reject & register→ → →
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Where it Breaks
Low light / low contrast
Occlusions
Speculars
Reflection
Transparency

Driving, Drones
Delivery, surveillance, monitoring
Augmented reality
Medical, underwater, space, ...
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LF Features

Light fields are good at these

LF Features
More selective detections
More robust and informative (3D) descriptors
More selective matches

 → Fewer missed and incorrect registrations

New application areas
Saved dollars and lives

Detect  describe  match  outlier reject & register→ → →
Low light / low contrast
Occlusions
Speculars
Reflection
Transparency
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Review: LF Structure

Stanford camera array
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LF Structure

Stanford camera array
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LF Structure

Stanford camera array
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LF Structure

Lytro Lenslet-based camera
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LF Structure

Lytro Lenslet-based camera
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LF Structure

Lytro Lenslet-based camera
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LF Structure

Lytro Lenslet-based camera
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Epipolar Images
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Previous Work: Hand-Crafted LF Features
[ Teixeira 2017 “3D keypoint detection by light field scale-depth space analysis” ]
   → 2D SIFT in all sub-views, Hough to find lines in EPI images
   → >200x slowdown; 2D decisions ignore 4D structure
[ Xu 2015 “Transcut: transparent object segmentation from a light-field image” ]
   → Optical flow between sub-views then a (partial) planarity check to find refractions

[Xu2015] [Teixeira2017]
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Opportunity and Approach

Previous work doesn’t exploit LF structure for speed or robustness
An ideal feature

Is fast
Is robust
Just works (with minimal tuning)

1) Learning LF Features (ongoing @Stanford)
2) Fast refractive feature rejection (ongoing w/QUT)
3) A hand-crafted generalization of SIFT
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Contributions

1) LF feature detector and descriptor
Faster than current approaches (typically 20x faster)
More robust in low light, occlusions, non-Lambertian, ...

2) Quality filter and disparity estimate
Additional robustness to refractions, reflections, occlusions, …
Augmenting descriptor with disparity (depth)

[3) Adaptive operation]
Exploit favourable conditions
Estimate: additional 3x speed boost

4) Multiview LF Dataset (name?)
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Review: SIFT

Detector: Difference of Gaussians

… then find local extrema.
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State-of-the-Art: Repeating 2D SIFT

No benefit in low light
Descriptor sensitive to occlusions
Sensitive to non-Lambertian surf.
Slow! (Ns x Nt x slower)

… then combine (ad-hoc)

[Teixeira 2017]
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Full 4D: Jointly Detecting Scale, Slope

See through occlusions
See in low light
Detect non-Lambertian
Est. depth (slope)
VERY slow
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Separability  Speed→

Identical to Full 4D
Much faster
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Mixed-Domain Filtering

Faster in some scenarios
Depth volumes
   → Fewer slices
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Demo of Joint Slope / Scale Estimation
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Complexity

Method Est. Relative Speed
(bigger is better)

Illum, 16 scales, 8 slopes

Est. Relative Speed
(bigger is better)

Gantry, 16 scales, 8 slopes

Naive SIFT 4D 1 1

4D Full 1 / 21 1 / 21

2D FFT 9.8 11

2D Spatial 22 27

Adaptive Up to 60 Up to 100



Stanford Computational Imaging LabComputationalImaging.org 24

Quality Filter
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Abstracts away from texture

Captures non-lambertian effects

*

Local 4D Structure from Autocorrelation
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Epipolar Voting: 4D  2D→
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Reflections, Refractions
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Proof of Concept: Focal stack feature

2 Lytro Illum images treated in 2D with stereo registration



Stanford Computational Imaging LabComputationalImaging.org 29

Proof of Concept: Focal stack feature
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Proof of Concept: Focal stack feature
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Proof of Concept: Focal stack feature
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Proof of Concept: Focal stack feature
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Proof of Concept: Focal stack feature
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Proof-of-Concept: Slope
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Proof-of-Concept: Refractions
Yellow = poor feature
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Proof-of-Concept: Occlusions
Yellow = poor feature
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Proof-of-Concept: Faster Refractions

Xu 2015 Transcut

[w/Dorian Tsai, QUT, Brisbane]
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Proof-of-Concept: Faster Refractions

Proposed    IROS→

[w/Dorian Tsai, QUT, Brisbane]
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Evaluation

[Teixeira2017, schonberger2017, heinly2012]

Quantitative comparison to 2D SIFT and Teixeira2017
Ground truth obtained via hand-curated SfM & Multi-View LF Dataset
Repeatability, putative match ratio, precision, matching score, recall
Computational complexity (FLOPS, O(.)), [speed of MATLAB implementation]

Qualitative demonstrations
SfM failing for 2D / naive features
… and succeeding with LiFF features
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Dataset

4251 LFs in 31 categories
Illum camera, varying zoom, focus, exposure
Indoor, outdoor, easy, challenging
3-6 views of each scene, fixed focus/zoom
Some revisited sites: illumination variation
Uncalibrated camera, rough intrinsics / rectification
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Milestones

Slope est / feature rejecter  [0.5 week]
Low-complexity 4D SIFT  [1]

Practically fast implementation  [0.5]
Adaptive version  [1]
Evaluation  [2]
Paper  [1]

Colmap ground truth  [2 weeks]
Challenging example collection  [1]
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LF Capture

EPIImaging
Module
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e.g. Reflection

Reflections cause spurious matches [Wanner2013] Fix: Multi-orientation analysis
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e.g. Occlusions

Occlusions break matching [Wanner2013] Fix: Multi-orientation analysis
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e.g. Refraction
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e.g. Reflection & Low Light
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Refinements
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Detail: Low-level Metrics

Detector Repeatability
Fraction of features correctly re-detected under camera pose change

Putative Match Ratio = #Putative Matches / #Detected Features
Fraction of detected features initially identified as a match, i.e. selectivity of matching

Precision = #Inlier Matches / #Putative Matches
How many putative matches are good

Matching Score = #Inlier Matches / #Detected Features
Number of deteced features that will result in good matches

Recall = #Inlier Matches / #True Matches 
How many true matches were found

[Mikolajczyk2005, Schonberger2017, Heinly2012]
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Previous Work
[ Tosic 2014 “3D keypoint detection by light field scale-depth space analysis” ]
   → Detects edge keypoints, no descriptor, assumes Lambertian
[ Ghasemi 2014 “Scale-invariant representation of light field images for object recognition and tracking” ]
   → Global (full frame) descriptor
[ Zhang 2017 “Ray Space Features for Plenoptic Structure-From-Motion” ]
  → Line segment detector in all subviews

[Tosic 2014] [Zhang 2017]
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[ Schonberger 2017 “Comparative Evaluation of Hand-Crafted and Learned Local Features” ]
  → Hand-crafted modern SIFT are faster and better at reconstruction than learned features
  → Framework for evaluating features for reconstruction tasks
  → Only compares descriptors, not detectors; still a good framework for comparing

Are Hand-Crafted Features Relevant?

Figure 11. Sparse and dense reconstruction of Fountain for DSP-SIFT.
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[SIFT: Lowe 2004] “near real-time performance”, “0.3 seconds on a 2GHz Pentium 4”
IJCV: >45,000 citations

[FAST: Rosten 2006] “Machine learning for high-speed corner detection”
ECCV: >3,000 citations

[SURF: Bay 2008] “Speeded-Up Robust Features”
ECCV & CVIU: >11,000 citations

[BRISK: Leutenegger 2011]  “an order of magnitude faster than SURF”
ICCV: > 2,000 citations

Is Speed Important / a Contribution?
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