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Abstract—The occurrence of missing regions in output images
is a critical issue when rendering a scene from novel vantage
points using depth-based view synthesis. These regions typically
have to be filled using inpainting algorithms, which are slow and
might yield unconvincing results. Understanding the likelihood of
the occurrence of these missing regions can help us design better,
application-specific data representations and camera systems by
knowing which vantage points should be captured and stored
to minimize disocclusion holes in the synthesized novel views.
In this paper, we propose a statistical model that predicts the
likelihood of missing data in synthesized images as a function of
the viewpoint translation. Scene-dependent model parameters are
efficiently estimated using simple shift and scaling transforma-
tions on the source depth images without needing view synthesis.

Index Terms—Novel view synthesis, depth-based rendering,
virtual reality, omnistereo, statistical modeling

I. INTRODUCTION

Depth-image-based rendering (DIBR) is one of the most
common view synthesis techniques and is widely used in a
variety of applications such as free viewpoint television sys-
tems, 3D displays, virtual reality (VR) with motion parallax,
cinematic postproduction, light-field compression, parallax re-
moval in video conferencing, and 3D cinema, among others.

When the vantage point from which a scene is rendered
and that from which it is captured differ from each other,
portions of the background that were occluded by foreground
scene objects, as seen by the camera, may be visible from the
novel vantage point. Since these regions were never observed
by the camera, this will lead to missing areas, also known as
“disocclusion holes”, in the synthesized output. This is one of
the major challenges in using DIBR [1][2] since the need for
hole-filling degrades the rendering quality and speed.

In this paper, we propose a statistical model that can
predict the occurrence of disocclusions as a function of output
viewpoint translation using model parameters that implicitly
capture the depth statistics of the scene. This allows us to
estimate the disocclusions from any vantage point without
performing view synthesis. This makes our method well-suited
to quickly analyze various data representations and camera
geometries without generating hundreds of novel views.

The main contributions of our work are as follows.

1) We propose a statistical model that predicts the occur-
rence of disocclusion holes in depth-based rendering

2) We demonstrate a method to efficiently estimate the
model parameters using the source depth images

3) We extend the model to handle views synthesized from
multiple source images

4) We provide practical guidelines for designing data rep-

resentations as well as camera geometries for virtual
reality to minimize disocclusions in synthesized views

II. RELATED WORK

The authors in [1] summarize the typical processing pipeline
for a depth-based rendering approach and recognize the need
for hole-filling as one of the main challenges. Real-time
inpainting methods [3] are rarely depth-aware and do not
produce convincing results in DIBR. On the other hand, high-
quality inpainting techniques [2][4] do not work in real-
time. Additionally, none of these techniques ensure stereo
consistency. Yet another approach is to stretch the background
to eliminate the need for inpainting [5]. While such techniques
could work in real-time, the results look unnatural. Thus,
disocclusion holes are an unsolved challenge in DIBR and
efforts to minimize their occurrence will prove crucial.

A vital step in estimating the occurrence of disocclusions is
understanding the flow field induced in the scene as a result of
ego-motion. Studies of such flow fields are presented in [6][7].
A statistical analysis of clutter in 3D scenes is proposed in [8].

III. DISOCCLUSION MODELING

We wish to create a model that uses viewer translation and
scene depth statistics to estimate the occurrence of disocclu-
sion holes from the viewer’s vantage point without performing
view synthesis. Intuitively, we expect lateral, vertical, and
looming motion to present differing behavior. For instance, a
vertical pillar will cause holes due to lateral viewpoint motion,
but not vertical. Moreover, for small translations, we expect
the behavior to be linear – if a viewer moves twice as much,
we expect the size of the holes to double. To verify our
intuition, we rendered 150 texture-plus-depth images across 6
scenes based on 3D models of real-world environments. Using
these as inputs, we synthesized novel views simulating the 3
different types of viewer translation. The results summarized
in Fig. 1 are indeed consistent with what we expect.

A. The Model
Let
−→
T be the translation of a viewer from the source

vantage point. Based on the viewing direction, we breakdown−→
T into 3 orthogonal components – looming translation (x),
lateral (y), and vertical (z). Based on Fig. 1, we expect the
disocclusion probability to be piecewise linear along each axis.
We therefore model the disocclusion probability P as

P (x, y, z) = ax+ by + cz

where a = {a+ if x ≥ 0; a− else}, b = {b+ if y ≥ 0; b− else},
c = {c+ if z ≥ 0; c− else}, and {a+, a−, b+, b−, c+, c−}
are constant model parameters that implicitly capture the



geometry of the scene or scenes at hand. Note that by design
P (0, 0, 0) = 0 because if the viewer and the camera positions
are identical, then by definition we cannot have disocclusions.
The next task is to estimate {a+, a−, b+, b−, c+, c−} so that
we can use our model to predict disocclusions. This is ad-
dressed in the next two subsections.

Fig. 1. The horizontal axis shows the lateral/looming/vertical view translation
from the camera; The vertical axis shows the percentage of the synthesized
viewport that is missing due to disocclusions, averaged across scenes

B. Motion-Driven Flow Fields
Translational ego-motion induces a flow field in any 3D

scene. Any depth discontinuities not parallel to the local
flow field result in occlusions or disocclusions. Estimating
parameters {a+, a−, b+, b−, c+, c−} therefore comes down to
estimating the flow fields resulting from looming, lateral, and
vertical components, respectively, of the viewer’s translation.

In this subsection, we describe the flow fields induced by
the 3 types of motion in panoramic as well as viewport source
images. We describe the process in detail for lateral motion
and present the outcomes for looming and vertical translations.

1) Panoramic Source: In panoramic images, viewer motion
induces complex flow fields that look like the meridian lines on
a globe, diverging in the direction of motion, and converging at
a point diametrically opposite. However, if we focus on only
a small section of the panorama that the viewer is directly
looking at, then the flow can be modeled with relative ease
under lateral, looming, or vertical translations.

Lateral Motion: Consider a viewer located at the center of
a scene that is a perfect sphere. Looking in any direction, the
viewer makes a small lateral step and we record a narrow
section of the flow field that the viewer is looking at. We
mosaic all these flows to give us a composite flow for lateral
motion looking in any direction (Fig. 2). Notice that the flow
lines are horizontal and parallel. The composite flow field can
therefore be simulated using a cyclic shift of the panorama.

Vertical Motion: A similar analysis shows that the flow field
comprises vectors along meridians joining the zenith and nadir
points with the flow magnitude at any point proportional to
the cosine of the elevation angle of that point. This can be
approximated by splitting the panorama into top and bottom
halves and vertically stretching one half while compressing
the other to maintain the overall resolution.

Looming/Receding Motion: Scale the panorama up or down
vertically, while keeping the horizontal resolution unchanged

2) Viewport Source: In viewports with limited fields-of-
view, the flow fields resulting from left, right, up and down ego
motion can be approximated simply shifting the source image
in the opposite direction. Looming and receding motions are
approximated by scaling the image up or down, respectively.

Fig. 2. The figure shows the top view of a viewer located at the center of a
panoramic image. Looking in different directions (top to bottom), the viewer
takes a step to the right. This generates a flow field (middle, equirectangular)
with each red box showing a narrow slit that corresponds to the viewing
direction. We obtain the composite flow by mosaicking these slits (top right).
This flow can be approximated by parallel, horizontal lines (bottom right).

C. Estimating Model Parameters
The final step is to use the image transformations described

previously to approximate the flow fields resulting from each
of looming, lateral, and vertical ego-motion. Depth disconti-
nuities that cut across the local flow field result in visibil-
ity changes and will be used to estimate model parameters
{a+, a−}, {b+, b−}, and {c+, c−}, respectively, as follows.
Steps 1 through 4 below are shown in Fig. 3.

Fig. 3. Left to right: (a) Source depth map (in Diopters), (b) cyclically
left-shifted depth map (simulates ego-motion to the right) subtracted from the
original, (c) negative values suppressed, and (d) small value removal retains
only those regions that will result in holes from a rightward shifted viewpoint.

Step 1: For each type of motion, transform the source depth
map (in Diopters) following Sec. III-B. E.g. lateral ego-motion
corresponds to a cyclic shift of the depth panorama.

Step 2: Subtract the transformed depth from the original.
This pulls out the relevant depth edges, with the difference
magnitude corresponding to the strength of the discontinuity.

Step 3: Negative difference corresponds to regions that are
visible in the source and occluded in the novel view and do
not lead to holes, whereas positive difference indicates disoc-
clusions. We therefore suppress negative difference values.

Step 4: Small depth differences result from gradual changes
in scene depth rather than from object boundaries. Suppressing
small values helps retain only the strong depth edges.

Step 5: For each positive difference, we compute the
effective magnitude of viewer translation that would locally
result in the applied image transformation. E.g. for a cyclic
shift s and a depth difference (Diopters) ∆d, the effective
baseline is given by B = s/f∆d, where f is the focal length.

Step 6: Quantize the computed baselines. For each bin, store
a binary mask marking regions corresponding to that baseline.

Step 7: Vary the value of s in a range (e.g. range of negative
to positive cyclic shifts for lateral ego-motion) and repeat steps
1-6. The min. and max. values of s are deduced from the range
of viewer motion that is relevant to the application at hand.

Step 8: For each baseline bucket, take the union of the
binary masks computed in step 6 resulting from all the



values taken by s. This gives all the regions that will cause
disocclusions when the viewer moves by that baseline value.

Step 9: Counting the areas of these regions for different
baselines and for looming, lateral, and vertical motion allow
us to estimate {a+, a−}, {b+, b−}, and {c+, c−}, respectively.

IV. MODEL APPLICATIONS AND RESULTS
This section describes several scenarios in which the pro-

posed model can be applied to gain insights into disocclusion
behavior. Sec. V will discuss the practical implications of these
observations for designing systems that minimize disocclu-
sions in synthesized views. For our results, we use 6 synthetic
scenes based on real-world environments – 4 indoor, 2 outdoor.
Convention: translation in looming/right/up direction is posi-
tive whereas that in receding/left/down direction is negative.
A. Application: Singe Panorama as Source Image

In VR applications, DIBR systems typically use a panoramic
input to synthesize novel views. In this subsection, we use as
input a single omnistereo texture-plus-depth panorama [9][10]
(left or right) with a radius of 15 cm and predict disocclusions
from translated viewpoints. In each plot, the model prediction
is shown as a solid line. The points show the disocclusion data
generated for model verification using view synthesis.

Vertical Motion: Across all scenes, the model consistently
predicts that disocclusions increase faster due to upward
motion than downward, (Fig. 4, top left). This is because in
natural environments, objects are located on a ground plane
and moving up lets a viewer look past the foreground objects.

Looming Motion: The model shows that in scenes con-
taining mostly tall objects (typical outdoor scenes), receding
motion causes more holes than looming (Fig. 4, top right, red
line). The effect is the opposite for indoor scene where most
objects are located below the eye-level (black line).
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Fig. 4. The horizontal axis represents viewpoint translation and the vertical
axis shows the disocclusion likelihood as percentage. Top left: vertical motion,
top right: looming motion for a typical indoor and outdoor scene, bottom left:
lateral motion, bottom right: lateral motion in a scene with thin objects.

Lateral Motion: In stereo panoramas, since the scene is
imaged from points along the circumference, we expect the
least disocclusions when the novel view lies on the periphery.
This corresponds to a lateral translation of 15 cm to the left or
right when the view is synthesized using the left or the right
panorama respectively (Fig.4, bottom left).

Thin Objects: One of our scenes contain numerous thin,
vertical poles. Thin scene objects tend to violate the linear
relation between viewer translation and disocclusions. The
method described in Sec. III-C is also correctly able to predict
this nonlinear behavior (Fig.4, bottom right).

B. Model Improvement: Per-Pixel Viewpoint Translation
Stereo panoramas are multi-perspective images. That is,

different pixels in the panorama are captured from different
viewpoints on the viewing disk of the panorama [10]. This im-
plies that when a novel view is synthesized using a panoramic
source image, each output pixel, in effect, has a different
viewpoint translation (Fig. 5, left). Taking into account the
pixel-wise translation vectors makes the model predictions
align more closely with experimental data (Fig. 5, right).
C. Model Extension: Multiple Sources

A common application of DIBR is synthesizing novel views
that interpolate between two source views. Extending our
model to a pair of source images requires the correlation be-
tween the disocclusions when a novel view is synthesized from
each source individually (disocclusion indicator variables A1,
A2). E[Ajoint] = E[A1 ∩ A2] = E[A1]E[A2] + σ1σ2ρ, where
σ1, σ2 indicate standard deviations and ρ is the correlation.

To that end, we synthesized novel views using each indi-
vidual image from stereo pairs with varying baselines. In each
case, lateral motion is along the line joining the source vantage
points and looming motion is orthogonal to it. We normalize
all translations by the stereo baseline so that the source views
are located at ±1. We found that upon such normalization,
the correlation curves are almost identical across all different
scenes and baselines, for both lateral and looming motion
(Fig. 6). This is likely because the depth statistics of most
natural scenes are self-similar over change of scale.

Using these correlation curves for lateral and looming mo-
tion, and using the model improvement described in Sec. IV-B,
we are able to predict the disocclusion behavior for views syn-
thesized by jointly using both the images of stereo panorama
pairs for varying baselines (Fig. 7).
D. Application: Constructing Panoramas from Camera Rigs

Real-world environments can be viewed in stereo in VR
when the raw images from camera rigs are used to con-
struct stereo panoramas. Wide baseline, vertically separated
panoramas can additionally respectively provide horizontal
and vertical head-motion parallax in VR [11]. Our model can
be used to analyze camera geometries.

As examples, we analyze 2 camera systems – Facebook
Surround 360 (https://github.com/facebook/Surround360)
(FB360) and a 2-tier system created by stacking 2 FB360 rigs
one-above-the-other with a vertical separation of 20 cm. We
use the model to predict the disocclusions in the panoramas
constructed from these cameras as a function of the elevations
and the stereo baselines of these panoramas.

Our model predicts a threshold panorama radius of about
13.7 cm, within which the constructed panoramas have low
disocclusions and increase linearly outside (Fig. 8, left). This
plot can be used to determine the largest baseline possible for



Fig. 5. Left to right: (1) Each light ray queried by the target viewport is captured from a distinct source viewpoint, (2) experimental disocclusion data
generated by view synthesis, (3) model prediction without accounting for the source viewpoint spread, (4) improved model prediction.

Fig. 6. The vertical axis shows the correlation in the occurrence of holes in
novel views synthesized using each image from a stereo pair, one at a time.
The horizontal axis shows viewpoint translation normalized by the source
baseline; different lines show various stereo baselines. The gray regions show
1 standard deviation across scenes. Left: Lateral motion; Right: looming.

Fig. 7. Novel views from stereo panorama pairs: The vertical axis shows the
disocclusion likelihood (as percentage), the horizontal axis shows translation
(cm), and the different lines show various stereo baselines. Ground truth on
the left, model predictions on the right. Top: Lateral motion; Bottom: Looming

the panoramas while keeping disocclusions under a predefined
target. This in turn sets the range of a viewer’s head-motion
that can be supported with this camera geometry.

Next, we estimate disocclusions in panoramas as a function
of their vertical displacement from the rig center. We use
panoramas with a stereo baseline (diameter) of 13.7 cm×2 =
27.4 cm. We observe that (1) 2-tier camera geometries are bet-
ter at providing vertical parallax and (2) panoramas displaced
upward have more holes than those displaced downward.

V. CONCLUSIONS

The occurrence of disocclusion holes in synthesized novel
views can be predicted efficiently without performing view
synthesis and instead analyzing the depth discontinuities in the
source image in the context of the given viewpoint translation.

Using the model, we observe that, in general, more dis-
occlusions are created when a viewer moves upward in a
scene than downward. Therefore, scenes should be recorded
and stored from vantage points towards the top end of the
expected range of vertical ego-motion. Similarly, for indoor
scenes, looming motion creates more holes than receding.
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Fig. 8. The vertical axis shows disocclusions (%), solid lines show data
generated from panorama synthesis, dashed lines show model predictions.
Blue lines indicate analysis for FB360 and red lines for the 2-tier camera. Left:
The horizontal axis show the radii of the constructed panoramas. The black
lines indicate predictions for the cut-off radius beyond which disocclusions
are expected to increase linearly. Right: The horizontal axis shows the vertical
displacement of the panoramas from the center of each camera rig.

The trend is reversed for outdoor scenes. This should be used
to inform the placement of the viewer relative to the source
vantage points and the objects of interest in the scene.

When using a pair of source viewport images, disocclusions
are low when interpolating between the views and increase
linearly outside. In general, for multiple sources, disocclusions
are low within the convex hull of the source viewpoints. When
using stereo panoramas, disocclusions are minimal within
the viewing circle of the panoramas and increase linearly
outside. The depth-augmented panoramas should hence be
wide enough to accommodate the entire range of head-motion.

In the context of cinematic VR, given a camera rig geom-
etry, we can use the model to predict a limit on the stereo
baseline and vertical separation for panoramas constructed
using the camera, such that the disocclusions in the panoramas
remain under a predefined threshold. This will decide the range
of viewer head-motion that can be supported with that camera.
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