
1. Apply shift/scale transformation to source depth (in Diopters)

2. Subtract from original; positive differences indicate disocclusion holes

3. Compute effective translational baseline that would give rise to each hole

4. Repeat with varying scales/shifts and accumulate holes for each baseline

• DIBR is commonly used to synthesize
panoramas from camera systems

• We model how the disocclusion hole
correlate in novel views synthesized
using individual camera images and
predict disocclusion behavior

• Using multiple source images reduces disocclusions in novel views

• Disocclusion holes in views synthesized from multiple source images can
be predicted if we know how the individual holes correlate with each other
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• Disocclusions are a critical issue in depth-based novel view synthesis; Inpainting algorithms are slow and yield unconvincing results

• Understanding the likelihood of the occurrence of disocclusions can help in designing better data representations and camera systems

• We propose a statistical model that predicts the likelihood of holes in the synthesized views as a function of the viewpoint translation

• Scene-dependent model parameters are estimated using shift/scale transformations on input depth, without needing view synthesis

Abstract

Disocclusion Model

• Grows linearly with small viewpoint translation
• Is additive over small translations
• Is affine: no translation à no occlusions, i.e. 𝑝 0, 0, 0 = 0

Estimating Model Parameters

Applications and Results
A. Views Synthesized from a Single Texture-plus-depth Source

D. Views Synthesized from a Pair of Texture-plus-depth Sources

C. Accounting for Per-Pixel Viewpoint Translation

E. Analyzing Camera Geometries 0 5 10 15 20 25 30
Stereo Panorama Radius (cm)
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B. Middlebury Stereo Datasets
Over 27 scenes and 21 translations along each
axis, the disocclusion likelihood predicted by
the model and the ground truth have a
Pearson correlation of – lateral motion: 0.977,
vertical: 0.984, and looming: 0.910

Ego motion 
induced flow fields

Depth 
discontinuities Disocclusions+ =

Known from 
source depth map

Approximated using simple 
shift/scale image transformations

E.g. Lateral viewpoint translation ≈ Cyclic horizontal shift of source panorama

Under random viewing direction and scene geometry, the indicator variable for 
occlusion 𝐴 can be modeled as:

𝐴 = '1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝(𝑥, 𝑦, 𝑧)
0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝(𝑥, 𝑦, 𝑧)

Where 𝑥, 𝑦, 𝑧 are the looming, lateral, and vertical components of the viewpoint 
translation from the source vantage point. And 𝑝(𝑥, 𝑦, 𝑧) is piecewise linear

𝑝 𝑥, 𝑦, 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧

𝑎 = '𝑎: 𝑖𝑓 𝑥 > 0
𝑎= 𝑒𝑙𝑠𝑒 𝑏 = '𝑏: 𝑖𝑓 𝑦 > 0

𝑏= 𝑒𝑙𝑠𝑒 𝑐 = '𝑐: 𝑖𝑓 𝑧 > 0
𝑐= 𝑒𝑙𝑠𝑒

(𝑎: 𝑎= 𝑏: 𝑏= 𝑐: 𝑐=) are model parameters

Our model can correctly predict disocclusion trends including the nonlinear
behavior of thin structures in the scene (d)
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Different pixels in a stereo panorama are captured from different viewpoints
Not accounting for this gives wrong prediction (left), improved model (right)

Observations: For small viewpoint translations, the disocclusion likelihood


